Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,57 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
pipeline_tag: image-segmentation
|
4 |
+
library_name: pytorch
|
5 |
+
tags:
|
6 |
+
- segformer
|
7 |
+
- mit-b4
|
8 |
+
- transformer
|
9 |
+
- segmentation-models-pytorch
|
10 |
+
- timm
|
11 |
+
- pytorch
|
12 |
+
- remote-sensing
|
13 |
+
- sentinel-2
|
14 |
+
- rgb
|
15 |
+
- cloud-detection
|
16 |
+
datasets:
|
17 |
+
- "isp-uv-es/CloudSEN12Plus"
|
18 |
+
---
|
19 |
+
|
20 |
+
# Cloud Detection — SegFormer (MiT-B4 encoder, RGB)
|
21 |
+
|
22 |
+
**Repository:** `Burdenthrive/cloud-detection-segformer-mit-b4`
|
23 |
+
**Task:** Multiclass semantic segmentation (4 classes) on **Sentinel‑2 L1C RGB** (3 bands) using **SegFormer** (`segmentation_models_pytorch`) with **MiT‑B4** encoder.
|
24 |
+
|
25 |
+
This model predicts per‑pixel labels among: **clear**, **thick cloud**, **thin cloud**, **cloud shadow**.
|
26 |
+
|
27 |
+
---
|
28 |
+
|
29 |
+
## ✨ Highlights
|
30 |
+
|
31 |
+
- **Input:** Sentinel‑2 L1C RGB tiles/patches (float32, shape `B×3×H×W`, bands **B04‑B03‑B02**).
|
32 |
+
- **Backbone:** `mit_b4` (MiT encoder via `segmentation_models_pytorch`).
|
33 |
+
- **Output:** Logits `B×4×H×W` (apply softmax + argmax).
|
34 |
+
- **Files:** `model.py`, `config.json`, and weights (`model.safetensors` and/or `best_model_mc.pth`).
|
35 |
+
|
36 |
+
---
|
37 |
+
|
38 |
+
## 📦 Files
|
39 |
+
|
40 |
+
- `model.py` — defines the `SegFormer` class (wrapper around `smp.Segformer`).
|
41 |
+
- `config.json` — hyperparameters and class names:
|
42 |
+
```json
|
43 |
+
{
|
44 |
+
"task": "image-segmentation",
|
45 |
+
"model_name": "segformer-mit-b4",
|
46 |
+
"model_kwargs": {
|
47 |
+
"encoder_name": "mit_b4",
|
48 |
+
"encoder_weights": "imagenet",
|
49 |
+
"in_channels": 3,
|
50 |
+
"num_classes": 4,
|
51 |
+
"freeze_encoder": false
|
52 |
+
},
|
53 |
+
"classes": ["clear", "thick cloud", "thin cloud", "cloud shadow"],
|
54 |
+
"id2label": { "0": "clear", "1": "thick cloud", "2": "thin cloud", "3": "cloud shadow" },
|
55 |
+
"label2id": { "clear": 0, "thick cloud": 1, "thin cloud": 2, "cloud shadow": 3 },
|
56 |
+
"input_bands": ["B04", "B03", "B02"]
|
57 |
+
}
|