Cloud Detection — U-Net (RegNetZ D8 encoder)
Repository: Burdenthrive/cloud-detection-unet-regnetzd8
Task: Multiclass image segmentation (4 classes) on multispectral Sentinel‑2 L1C (13 bands) using U‑Net (segmentation_models_pytorch
) with RegNetZ D8 encoder.
This model predicts per‑pixel labels among: clear, thick cloud, thin cloud, cloud shadow.
✨ Highlights
- Input: 13‑band Sentinel‑2 L1C tiles/patches (float32, shape
B×13×512×512
). - Backbone:
tu-regnetz_d8
(TIMM encoder viasegmentation_models_pytorch
). - Output: Logits
B×4×512×512
(apply softmax + argmax). - Files:
model.py
,config.json
, and weights.
📦 Files
model.py
— defines theUNet
class (wrapper aroundsmp.Unet
).config.json
— hyperparameters and class names:{ "task": "image-segmentation", "model_name": "unet-regnetz-d8", "model_kwargs": { "in_channels": 13, "num_classes": 4 }, "classes": ["clear", "thick cloud", "thin cloud", "cloud shadow"] }
- Downloads last month
- 12