Cloud Detection — U-Net (RegNetZ D8 encoder)

Repository: Burdenthrive/cloud-detection-unet-regnetzd8
Task: Multiclass image segmentation (4 classes) on multispectral Sentinel‑2 L1C (13 bands) using U‑Net (segmentation_models_pytorch) with RegNetZ D8 encoder.

This model predicts per‑pixel labels among: clear, thick cloud, thin cloud, cloud shadow.


✨ Highlights

  • Input: 13‑band Sentinel‑2 L1C tiles/patches (float32, shape B×13×512×512).
  • Backbone: tu-regnetz_d8 (TIMM encoder via segmentation_models_pytorch).
  • Output: Logits B×4×512×512 (apply softmax + argmax).
  • Files: model.py, config.json, and weights.

📦 Files

  • model.py — defines the UNet class (wrapper around smp.Unet).
  • config.json — hyperparameters and class names:
    {
      "task": "image-segmentation",
      "model_name": "unet-regnetz-d8",
      "model_kwargs": { "in_channels": 13, "num_classes": 4 },
      "classes": ["clear", "thick cloud", "thin cloud", "cloud shadow"]
    }
    
Downloads last month
12
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train Burdenthrive/cloud-detection-unet-regnetzd8