Token Classification
Transformers
Safetensors
French
modernbert

Moderncamembert-4entities

Model Description

We present Moderncamembert-4entities, which is a Moderncamembert-cv2-base fine-tuned for the Name Entity Recognition task for the French language on four French NER datasets for 4 entities (LOC, PER, ORG, MISC).
All these datasets were concatenated and cleaned into a single dataset that we called frenchNER_4entities.
There are a total of 384,773 rows, of which 328,757 are for training, 24,131 for validation and 31,885 for testing.

Evaluation results

The evaluation was carried out using the evaluate python package.

frenchNER_4entities

For space reasons, we show only the F1 of the different models. You can see the full results below the table.


Model

Parameters

Context

PER

LOC

ORG

MISC

Jean-Baptiste/camembert-ner

110M

512 tokens

0.971

0.947

0.902

0.663

cmarkea/distilcamembert-base-ner

67.5M

512 tokens

0.974

0.948

0.892

0.658

NERmembert-base-4entities

110M

512 tokens

0.978

0.958

0.903

0.814

NERmembert2-4entities

111M

1024 tokens

0.978

0.958

0.901

0.806

NERmemberta-4entities

111M

1024 tokens

0.979

0.961

0.915

0.812

Moderncamembert-4entities (this model)

136M

8192 tokens

0.981

0.960

0.913

0.811

NERmembert-large-4entities

336M

512 tokens

0.982

0.964

0.919

0.834
Full results {'LOC': {'precision': 0.9565485362095532,
'recall': 0.9639751552795031,
'f1': 0.9602474864655839,
'number': 54740},
'MISC': {'precision': 0.8599987367357251,
'recall': 0.7680873268834796,
'f1': 0.8114486642728371,
'number': 35453},
'O': {'precision': 0.9908647492910065,
'recall': 0.9941133167897094,
'f1': 0.9924863747765278,
'number': 805547},
'ORG': {'precision': 0.9089921444091593,
'recall': 0.9175031632222691,
'f1': 0.913227824188741,
'number': 11855},
'PER': {'precision': 0.97616260010303,
'recall': 0.9855785143505603,
'f1': 0.9808479600959955,
'number': 63447},
'overall_precision': 0.9826691327460604,
'overall_recall': 0.9826691327460604,
'overall_f1': 0.9826691327460604,
'overall_accuracy': 0.9826691327460604}

Usage

from transformers import pipeline

ner = pipeline('token-classification', model='CATIE-AQ/Moderncamembert_4entities', tokenizer='CATIE-AQ/Moderncamembert_4entities', aggregation_strategy="simple")

result = ner(
"Le dévoilement du logo officiel des JO s'est déroulé le 21 octobre 2019 au Grand Rex. Ce nouvel emblème et cette nouvelle typographie ont été conçus par le designer Sylvain Boyer avec les agences Royalties & Ecobranding. Rond, il rassemble trois symboles : une médaille d'or, la flamme olympique et Marianne, symbolisée par un visage de femme mais privée de son bonnet phrygien caractéristique. La typographie dessinée fait référence à l'Art déco, mouvement artistique des années 1920, décennie pendant laquelle ont eu lieu pour la dernière fois les Jeux olympiques à Paris en 1924. Pour la première fois, ce logo sera unique pour les Jeux olympiques et les Jeux paralympiques."
)

print(result)

Environmental Impact

Carbon emissions were estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). The hardware, runtime, cloud provider, and compute region were utilized to estimate the carbon impact.

  • Hardware Type: A100 PCIe 40/80GB
  • Hours used: 2h48min
  • Cloud Provider: Private Infrastructure
  • Carbon Efficiency (kg/kWh): 0.032 (estimated from electricitymaps for the day of April 15, 2025.)
  • Carbon Emitted (Power consumption x Time x Carbon produced based on location of power grid): 0.022 kg eq. CO2

Citations

Moderncamembert-4entities

@misc {Moderncamembert2025,
    author       = { {BOURDOIS, Loïck} },  
    organization = { {Centre Aquitain des Technologies de l'Information et Electroniques} },  
    title        = { Moderncamembert-4entities},
    year         = 2025,
    url          = { https://huggingface.co/CATIE-AQ/Moderncamembert-4entities },
    doi          = { 10.57967/hf/5202  },
    publisher    = { Hugging Face }
}

Moderncamembert-cv2-base

@misc{antoun2025modernbertdebertav3examiningarchitecture,
      title={ModernBERT or DeBERTaV3? Examining Architecture and Data Influence on Transformer Encoder Models Performance}, 
      author={Wissam Antoun and Benoît Sagot and Djamé Seddah},
      year={2025},
      eprint={2504.08716},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2504.08716}, 
}

NERmemBERTa-4entities

@misc {NERmemberta2024,
    author       = { {BOURDOIS, Loïck} },  
    organization = { {Centre Aquitain des Technologies de l'Information et Electroniques} },  
    title        = { NERmemberta-4entities},
    year         = 2024,
    url          = { https://huggingface.co/CATIE-AQ/NERmemberta-4entities },
    doi          = { 10.57967/hf/3640 },
    publisher    = { Hugging Face }
}

CamemBERT 2.0

@misc{antoun2024camembert20smarterfrench,
      title={CamemBERT 2.0: A Smarter French Language Model Aged to Perfection}, 
      author={Wissam Antoun and Francis Kulumba and Rian Touchent and Éric de la Clergerie and Benoît Sagot and Djamé Seddah},
      year={2024},
      eprint={2411.08868},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2411.08868}, 
}

NERmemBERT

@misc {NERmembert2024,
    author       = { {BOURDOIS, Loïck} },  
    organization = { {Centre Aquitain des Technologies de l'Information et Electroniques} },  
    title        = { NERmembert-base-3entities },
    year         = 2024,
    url          = { https://huggingface.co/CATIE-AQ/NERmembert-base-4entities },
    doi          = { 10.57967/hf/1752 },
    publisher    = { Hugging Face }
}

CamemBERT

@inproceedings{martin2020camembert,  
  title={CamemBERT: a Tasty French Language Model},  
  author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t},  
  booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},  
  year={2020}}

frenchNER_4entities

@misc {frenchNER2024,  
    author       = { {BOURDOIS, Loïck} },  
    organization  = { {Centre Aquitain des Technologies de l'Information et Electroniques} },  
    title        = { frenchNER_4entities },  
    year         = 2024,  
    url          = { https://huggingface.co/CATIE-AQ/frenchNER_4entities },  
    doi          = { 10.57967/hf/1751 },  
    publisher    = { Hugging Face }  
}

License

MIT

Downloads last month
0
Safetensors
Model size
136M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for CATIE-AQ/Moderncamembert_4entities

Finetuned
(4)
this model

Dataset used to train CATIE-AQ/Moderncamembert_4entities

Collection including CATIE-AQ/Moderncamembert_4entities