This model has been pushed to the Hub using the PytorchModelHubMixin integration:
- Library: [More Information Needed]
- Docs: [More Information Needed]
The model class looks like the following:
from transformers import BertModel
class BertClassifier(nn.Module, PyTorchModelHubMixin):
def __init__(self, dataset: str, num_classes, dropout=0.5):
super(BertClassifier, self).__init__()
self.model_name = "bert-base-uncased"
print(f"Loading BERT model {self.model_name} for {dataset} dataset...")
self.bert = BertModel.from_pretrained(self.model_name)
self.dropout = nn.Dropout(dropout)
self.linear = nn.Linear(768, num_classes) # in features, out features = number of classes
self.relu = nn.ReLU()
def forward(self, input_ids, attention_mask):
_, pooled_output = self.bert(input_ids=input_ids, attention_mask=attention_mask, return_dict=False)
dropout_output = self.dropout(pooled_output)
linear_output = self.linear(dropout_output)
final_layer = self.relu(linear_output)
return final_layer
The FACAD dataset has 78 classes. Loading in the model looks like this:
model = BertClassifier.from_pretrained("CDL-RecSys/BERT-uncased-fic-category-classifier")
Before classifying the input sequence, the phrase needs to be processed with the BertTokenizer
:
from transformers import BertModel, BertTokenizer
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
input = "this shawl collar jersey blazer bloom with black and white floral patterning inspired by the work of rising spanish photographer coco capit n"
texts = self.tokenizer(batch, padding='max_length', max_length = 512, truncation=True,return_tensors="pt")
input_ids = texts["input_ids"]
attention_mask = texts["attention_mask"]
output = model(input_ids, attention_mask)
class = output.argmax(dim=1) # should be 51 (blazer)
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for CDL-RecSys/BERT-uncased-fic-category-classifier
Base model
google-bert/bert-base-uncased