Llama2_init_Mistral / README.md
leaderboard-pr-bot's picture
Adding Evaluation Results
0f1bc71 verified
|
raw
history blame
3.85 kB
metadata
license: apache-2.0
model-index:
  - name: Llama2_init_Mistral
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 60.07
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Cartinoe5930/Llama2_init_Mistral
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 83.3
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Cartinoe5930/Llama2_init_Mistral
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 64.09
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Cartinoe5930/Llama2_init_Mistral
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 42.15
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Cartinoe5930/Llama2_init_Mistral
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 78.37
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Cartinoe5930/Llama2_init_Mistral
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 37.91
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Cartinoe5930/Llama2_init_Mistral
          name: Open LLM Leaderboard

Base Model - SOLAR-10.7B

This model is the base model implementation of SOLAR-10.7B. The architecture of base model is Llama2 architecture and initialized with weights of Mistral.

Please check specific details in the GitHub Repository.

GitHub Repository: https://github.com/gauss5930/iDUS

πŸ† HuggingFace Open LLM Leaderboard

Model ARC HellaSwag MMLU TruthfulQA Winogrande GSM8K Average
Llama2_init_Mistral 60.07 83.3 64.09 42.15 78.37 37.91 60.98

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 60.98
AI2 Reasoning Challenge (25-Shot) 60.07
HellaSwag (10-Shot) 83.30
MMLU (5-Shot) 64.09
TruthfulQA (0-shot) 42.15
Winogrande (5-shot) 78.37
GSM8k (5-shot) 37.91