metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: nomic-ai/nomic-embed-text-v1.5
widget:
- source_sentence: >-
What contributed to the increase in accounts receivable in 2023 compared
to the previous year?
sentences:
- >-
At December 31, 2023, Caterpillar’s consolidated net worth was $19.55
billion, which was above the $9.00 billion required under the Credit
Facility.
- >-
Accounts receivable increased to $3,154 million at October 29, 2023 from
$2,958 million at October 30, 2022, primarily due to revenue linearity,
offset in part by additional receivables sold through factoring
arrangements.
- >-
The EU adopted the Carbon Border Adjustment Mechanism (CBAM), which
subjects certain imported materials such as iron, steel, and aluminum,
to a carbon levy linked to the carbon price payable on domestic goods
under the European Trading Scheme. The CBAM could increase costs of
importing such materials and/or limit the ability to import lower cost
materials from non-EU countries.
- source_sentence: >-
What primarily constituted marketing expenses for the year ended December
31, 2025?
sentences:
- >-
This is the world’s first liquefied natural gas (LNG) plant supplied
with associated gas, where the natural gas is a byproduct of crude oil
production.
- >-
Marketing expenses consist primarily of advertising expenses and certain
payments made to our marketing and advertising sales partners.
- >-
In January 2024, the CFPB proposed a rule that could significantly
restrict bank overdraft fees.
- source_sentence: >-
What is the total cash flow from operating activities for Airbnb, Inc. in
2023?
sentences:
- Net cash provided by operating activities | 2,313 | | 3,430 | | 3,884
- >-
Under ASO contracts, self-funded employers generally retain the risk of
financing the costs of health benefits, with large group customers
retaining a greater share and small group customers a smaller share of
the cost of health benefits.
- >-
Of the $2.2 billion in revenue that we generated in 2023, 55% came from
customers in the government segment, and 45% came from customers in the
commercial segment.
- source_sentence: >-
What major legislative act mentioned in the text was enacted by the U.S.
government on August 16, 2022?
sentences:
- >-
In July 2022, the borrowing capacity under the back-up facilities
expanded from $3.0 billion to $5.0 billion.
- >-
The Company manages its investment portfolio to limit its exposure to
any one issuer or market sector, and largely limits its investments to
investmententious grade quality.
- >-
On August 16, 2022, the U.S. government enacted the Inflation Reduction
Act of 2022.
- source_sentence: >-
What is the maximum duration for patent term restoration for
pharmaceutical products in the U.S.?
sentences:
- >-
Patent term restoration for a single patent for a pharmaceutical product
is provided to U.S. patent holders to compensate for a portion of the
time invested in clinical trials and the U.S. Food and Drug
Administration (FDA). There is a five-year cap on any restoration, and
no patent's expiration date may be extended beyond 14 years from FDA
approval.
- >-
Using AI technologies, our Tax Advisor offering leverages information
generated from our ProConnect Tax Online and Lacerte offerings to enable
year-round tax planning services and communicate tax savings strategies
to clients.
- >-
In 2023, catastrophe losses were primarily due to U.S. flooding, hail,
tornadoes, and wind events.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: nomic 1.5 base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7285714285714285
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8514285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8885714285714286
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.92
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7285714285714285
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28380952380952384
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17771428571428569
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09199999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7285714285714285
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8514285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8885714285714286
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.92
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.82688931465871
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7967777777777774
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8005981271078951
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.7142857142857143
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8414285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8857142857142857
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9214285714285714
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7142857142857143
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2804761904761905
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17714285714285713
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09214285714285714
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7142857142857143
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8414285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8857142857142857
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9214285714285714
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8200375337187854
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7872664399092969
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7910342395417198
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.7014285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8385714285714285
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.88
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9242857142857143
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7014285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2795238095238095
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.176
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09242857142857142
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7014285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8385714285714285
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.88
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9242857142857143
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8144449051665447
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7791428571428568
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7827133843260672
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.7071428571428572
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8342857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8742857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9242857142857143
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7071428571428572
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2780952380952381
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17485714285714282
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09242857142857142
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7071428571428572
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8342857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8742857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9242857142857143
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8164938269316206
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.78222052154195
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7855606408045326
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.67
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8085714285714286
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8514285714285714
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8985714285714286
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.67
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26952380952380955
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17028571428571426
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08985714285714284
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.67
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8085714285714286
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8514285714285714
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8985714285714286
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7841742147445607
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7477647392290245
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7519306451620806
name: Cosine Map@100
nomic 1.5 base Financial Matryoshka
This is a sentence-transformers model finetuned from nomic-ai/nomic-embed-text-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/nomic-embed-text-v1.5
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("CatSchroedinger/nomic-v1.5-financial-matryoshka")
# Run inference
sentences = [
'What is the maximum duration for patent term restoration for pharmaceutical products in the U.S.?',
"Patent term restoration for a single patent for a pharmaceutical product is provided to U.S. patent holders to compensate for a portion of the time invested in clinical trials and the U.S. Food and Drug Administration (FDA). There is a five-year cap on any restoration, and no patent's expiration date may be extended beyond 14 years from FDA approval.",
'Using AI technologies, our Tax Advisor offering leverages information generated from our ProConnect Tax Online and Lacerte offerings to enable year-round tax planning services and communicate tax savings strategies to clients.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.7286 | 0.7143 | 0.7014 | 0.7071 | 0.67 |
cosine_accuracy@3 | 0.8514 | 0.8414 | 0.8386 | 0.8343 | 0.8086 |
cosine_accuracy@5 | 0.8886 | 0.8857 | 0.88 | 0.8743 | 0.8514 |
cosine_accuracy@10 | 0.92 | 0.9214 | 0.9243 | 0.9243 | 0.8986 |
cosine_precision@1 | 0.7286 | 0.7143 | 0.7014 | 0.7071 | 0.67 |
cosine_precision@3 | 0.2838 | 0.2805 | 0.2795 | 0.2781 | 0.2695 |
cosine_precision@5 | 0.1777 | 0.1771 | 0.176 | 0.1749 | 0.1703 |
cosine_precision@10 | 0.092 | 0.0921 | 0.0924 | 0.0924 | 0.0899 |
cosine_recall@1 | 0.7286 | 0.7143 | 0.7014 | 0.7071 | 0.67 |
cosine_recall@3 | 0.8514 | 0.8414 | 0.8386 | 0.8343 | 0.8086 |
cosine_recall@5 | 0.8886 | 0.8857 | 0.88 | 0.8743 | 0.8514 |
cosine_recall@10 | 0.92 | 0.9214 | 0.9243 | 0.9243 | 0.8986 |
cosine_ndcg@10 | 0.8269 | 0.82 | 0.8144 | 0.8165 | 0.7842 |
cosine_mrr@10 | 0.7968 | 0.7873 | 0.7791 | 0.7822 | 0.7478 |
cosine_map@100 | 0.8006 | 0.791 | 0.7827 | 0.7856 | 0.7519 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,300 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 9 tokens
- mean: 20.49 tokens
- max: 51 tokens
- min: 6 tokens
- mean: 45.72 tokens
- max: 687 tokens
- Samples:
anchor positive What limitations are associated with using non-GAAP financial measures such as contribution margin and adjusted income from operations?
Further, these metrics have certain limitations, as they do not include the impact of certain expenses that are reflected in our consolidated statements of operations.
What type of firm is PricewaterhouseCoopers LLP as mentioned in the financial statements?
PricewaterhouseCoopers LLP, mentioned as the independent registered public accounting firm with PCAOB ID 238, prepared the report on the consolidated financial statements.
What pages contain the financial Statements and Supplementary Data in IBM's 2023 Annual Report?
The Financial Statements and Supplementary Data for IBM's 2023 Annual Report are found on pages 44 through 121.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Falseload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.8122 | 10 | 11.5729 | - | - | - | - | - |
1.0 | 13 | - | 0.7995 | 0.7976 | 0.7929 | 0.7889 | 0.7646 |
1.5685 | 20 | 3.4999 | - | - | - | - | - |
2.0 | 26 | - | 0.8207 | 0.8189 | 0.8099 | 0.8090 | 0.7825 |
2.3249 | 30 | 2.8578 | - | - | - | - | - |
3.0 | 39 | - | 0.8267 | 0.8218 | 0.8151 | 0.8168 | 0.7826 |
3.0812 | 40 | 2.0904 | - | - | - | - | - |
3.7310 | 48 | - | 0.8269 | 0.8200 | 0.8144 | 0.8165 | 0.7842 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.5
- Sentence Transformers: 3.4.1
- Transformers: 4.48.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.3.0
- Datasets: 2.19.1
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}