PepTune / config.yaml
Sophia Tang
update
92f7053
noise:
type: loglinear
sigma_min: 1e-4
sigma_max: 20
state_dependent: True
mode: ppl_eval # train / ppl_eval / sample_eval
diffusion: absorbing_state
vocab: old_smiles # old_smiles / new_smiles / selfies / helm
backbone: roformer # peptideclm / helmgpt / dit / roformer / finetune_roformer
parameterization: subs # subs
time_conditioning: False
T: 0 # 0 (continuous time) / 1000
subs_masking: False
seed: 42
mcts:
num_children: 50
num_objectives: 5
topk: 100
mask_token: 4
num_iter: 128
sampling: 0 # 0 is gumbel sampling / > 0 samples children from top k probs
invalid_penalty: 0.5
sample_prob: 1.0
perm: True
dual: False
single: False
time_dependent: True
lr_scheduler:
_target_: transformers.get_constant_schedule_with_warmup
num_warmup_steps: 2500
data:
train: /home/st512/peptune/scripts/peptide-mdlm-mcts/data/finetune2/30K-train.csv
valid: /home/st512/peptune/scripts/peptide-mdlm-mcts/data/finetune2/30K-val.csv
batchinohup ng: wrapping # padding / wrapping
loader:
global_batch_size: 64
eval_global_batch_size: ${.global_batch_size}
# Note: batch_size and eval_batch_size are **per machine**
batch_size: ${div_up:${.global_batch_size}, ${eval:${trainer.devices} * ${trainer.num_nodes}}}
eval_batch_size: ${div_up:${.eval_global_batch_size}, ${eval:${trainer.devices} * ${trainer.num_nodes}}}
num_workers: ${eval:"len(__import__('os').sched_getaffinity(0))"}
pin_memory: True
sampling:
predictor: ddpm_cache # analytic, ddpm, ddpm_cache
num_sequences: 100
sampling_eps: 1e-3
steps: 128
seq_length: 100
noise_removal: True
num_sample_batches: 2 # Total samples: `num_gpus` * `loader.eval_batch_size` * num_sample_batches
num_sample_log: 2
stride_length: 1
num_strides: 1
training:
antithetic_sampling: True
sampling_eps: 1e-3
focus_mask: False
#dynamic_batching: True
accumulator: False
eval:
checkpoint_path: /home/st512/peptune/scripts/peptide-mdlm-mcts/checkpoints/11M-old-tokenizer/epoch=10-step=156276.ckpt
disable_ema: False
compute_generative_perplexity: False
perplexity_batch_size: 8
compute_perplexity_on_sanity: False
gen_ppl_eval_model_name_or_path: gpt2-large # gpt2-large, meta-llama/Llama-2-7b-hf
generate_samples: True
generation_model: /home/st512/peptune/scripts/peptide-mdlm-mcts/checkpoints/11M-old-tokenizer/
optim:
weight_decay: 0.075
lr: 3e-4
beta1: 0.9
beta2: 0.999
eps: 1e-8
pepclm:
hidden_size: 768
cond_dim: 256
n_heads: 20
n_blocks: 4
dropout: 0.5
length: 512
#scale_by_sigma: True
model:
type: ddit
hidden_size: 768
cond_dim: 128
length: 512
n_blocks: 12
n_heads: 12
scale_by_sigma: True
dropout: 0.1
roformer:
hidden_size: 768
n_layers: 8
n_heads: 8
max_position_embeddings: 1035
helmgpt:
hidden_size: 256
embd_pdrop: 0.1
resid_pdrop: 0.1
attn_pdrop: 0.1
ff_dropout: 0.
block_size: 140
n_layer: 8
n_heads: 8
trainer:
_target_: lightning.Trainer
accelerator: cuda
num_nodes: 1
devices: ${device_count:}
accumulate_grad_batches: ${div_up:${loader.global_batch_size}, ${eval:${trainer.devices} * ${loader.batch_size} * ${trainer.num_nodes}}}
gradient_clip_val: 1.0
precision: 64-true
num_sanity_val_steps: 2
max_epochs: 100
max_steps: 1_000_000
log_every_n_steps: 10
limit_train_batches: 1.0 # train on full dataset, can be used to toggle quick run
limit_val_batches: 1.0 # validate on full dataset, can be used to toggle quick run
#val_check_interval: 40 #954
check_val_every_n_epoch: 1
wandb:
project: peptune
notes: null
group: null
job_type: null
name: sophia-tang
id: ${.name}_nov12_set2
hydra:
run:
dir: ./${now:%Y.%m.%d}/
job:
chdir: True
checkpointing:
# Use custom `save_dir` if, e.g., saving to S3 bucket, otherwise leave this parameter as is
save_dir: ${cwd:}
# Note: `checkpoints` path should correspond to `checkpoint_every_n_steps.dirpath`
resume_from_ckpt: True
resume_ckpt_path: /home/st512/peptune/scripts/peptide-mdlm-mcts/checkpoints/11M-old-tokenizer/epoch=7-step=108225.ckpt
callbacks:
model_checkpoint:
_target_: pytorch_lightning.callbacks.ModelCheckpoint
every_n_epochs: 1
monitor: "val/nll"
save_top_k: 10
mode: "min"
dirpath: '/home/st512/peptune/scripts/peptide-mdlm-mcts/checkpoints/11M-old-tokenizer'