ChiJuiChen's picture
End of training
8ea5893 verified
|
raw
history blame
7.18 kB
metadata
license: mit
base_model: microsoft/git-base
tags:
  - generated_from_trainer
model-index:
  - name: GenerativeImage2Text-naruto
    results: []

GenerativeImage2Text-naruto

This model is a fine-tuned version of microsoft/git-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0424
  • Wer Score: 20.4909

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Score
7.2788 0.3344 50 4.3352 10.2091
2.0251 0.6689 100 0.2388 0.5182
0.0807 1.0033 150 0.0401 0.5091
0.0303 1.3378 200 0.0333 0.4455
0.0284 1.6722 250 0.0324 1.1273
0.0287 2.0067 300 0.0316 23.6909
0.0239 2.3411 350 0.0331 23.7455
0.022 2.6756 400 0.0328 23.7364
0.0236 3.0100 450 0.0317 23.7
0.0208 3.3445 500 0.0325 23.7636
0.0206 3.6789 550 0.0324 19.4
0.0214 4.0134 600 0.0320 23.6818
0.0183 4.3478 650 0.0318 23.5636
0.0194 4.6823 700 0.0314 23.7
0.0203 5.0167 750 0.0339 23.7182
0.0179 5.3512 800 0.0307 23.6909
0.0178 5.6856 850 0.0323 23.7182
0.0192 6.0201 900 0.0323 23.7273
0.0166 6.3545 950 0.0330 23.7091
0.0181 6.6890 1000 0.0346 23.7182
0.0176 7.0234 1050 0.0335 23.7
0.016 7.3579 1100 0.0357 23.7182
0.0167 7.6923 1150 0.0341 23.7
0.0165 8.0268 1200 0.0341 23.6727
0.0152 8.3612 1250 0.0356 23.6727
0.0158 8.6957 1300 0.0327 23.6273
0.0158 9.0301 1350 0.0352 23.6909
0.0148 9.3645 1400 0.0350 23.6909
0.0153 9.6990 1450 0.0348 23.5182
0.0153 10.0334 1500 0.0349 23.6818
0.0142 10.3679 1550 0.0345 23.6818
0.0143 10.7023 1600 0.0340 23.5727
0.0152 11.0368 1650 0.0341 23.6818
0.0137 11.3712 1700 0.0374 23.6818
0.0142 11.7057 1750 0.0324 23.6545
0.0141 12.0401 1800 0.0353 23.7
0.0134 12.3746 1850 0.0362 23.1545
0.0138 12.7090 1900 0.0357 23.6818
0.0138 13.0435 1950 0.0359 22.8909
0.0124 13.3779 2000 0.0372 23.4182
0.0132 13.7124 2050 0.0370 23.6909
0.0137 14.0468 2100 0.0380 23.7182
0.0118 14.3813 2150 0.0358 23.6545
0.0129 14.7157 2200 0.0376 23.6909
0.013 15.0502 2250 0.0379 23.4636
0.0115 15.3846 2300 0.0384 23.3909
0.0125 15.7191 2350 0.0369 23.2364
0.0126 16.0535 2400 0.0392 22.8545
0.0115 16.3880 2450 0.0379 23.0455
0.0118 16.7224 2500 0.0384 22.9455
0.0119 17.0569 2550 0.0371 23.5636
0.0108 17.3913 2600 0.0383 23.6455
0.0116 17.7258 2650 0.0378 23.6818
0.0114 18.0602 2700 0.0391 23.2091
0.0101 18.3946 2750 0.0399 22.1545
0.0113 18.7291 2800 0.0398 23.7182
0.0108 19.0635 2850 0.0389 23.0
0.01 19.3980 2900 0.0382 22.0818
0.0107 19.7324 2950 0.0392 22.8636
0.0109 20.0669 3000 0.0399 23.1091
0.0096 20.4013 3050 0.0404 22.7273
0.01 20.7358 3100 0.0398 22.3364
0.0102 21.0702 3150 0.0402 22.3636
0.0092 21.4047 3200 0.0395 21.7636
0.0096 21.7391 3250 0.0396 21.8727
0.0095 22.0736 3300 0.0394 21.4909
0.0089 22.4080 3350 0.0407 20.3455
0.009 22.7425 3400 0.0390 21.3727
0.009 23.0769 3450 0.0398 20.9273
0.0085 23.4114 3500 0.0406 20.8364
0.0087 23.7458 3550 0.0399 21.8727
0.0086 24.0803 3600 0.0409 20.9818
0.0082 24.4147 3650 0.0412 20.8455
0.0082 24.7492 3700 0.0406 21.5273
0.0083 25.0836 3750 0.0409 21.4545
0.008 25.4181 3800 0.0408 21.2818
0.0077 25.7525 3850 0.0414 21.1273
0.0075 26.0870 3900 0.0422 21.6727
0.007 26.4214 3950 0.0421 20.6636
0.0074 26.7559 4000 0.0428 21.2818
0.0072 27.0903 4050 0.0429 20.8
0.0066 27.4247 4100 0.0424 19.6182
0.0066 27.7592 4150 0.0423 19.9364
0.0066 28.0936 4200 0.0423 20.8636
0.0059 28.4281 4250 0.0425 20.6545
0.0066 28.7625 4300 0.0422 20.4909
0.0065 29.0970 4350 0.0423 20.5091
0.0061 29.4314 4400 0.0423 20.5
0.0058 29.7659 4450 0.0424 20.4909

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1