test_mod / README.md
Chilee244's picture
Upload folder using huggingface_hub
13c0607 verified
---
base_model:
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-Math-1.5B-Instruct
tags:
- merge
- mergekit
- lazymergekit
- Qwen/Qwen2.5-1.5B-Instruct
- Qwen/Qwen2.5-Math-1.5B-Instruct
---
# test_mod
test_mod is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct)
* [Qwen/Qwen2.5-Math-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Math-1.5B-Instruct)
## 🧩 Configuration
```yaml
# Configuration 5: SLERP Method
slices:
- sources:
- model: Qwen/Qwen2.5-1.5B-Instruct
layer_range: [0, 28]
- model: Qwen/Qwen2.5-Math-1.5B-Instruct
layer_range: [0, 28]
merge_method: slerp
base_model: Qwen/Qwen2.5-1.5B-Instruct
parameters:
t:
- filter: self_attn
value: 0.1
- filter: mlp
value: 0.1
- value: 0.1
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Chilee244/test_mod"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```