toukmaji-flanigan-gem25
Collection
Models and datasets from ACL GEM paper (Toukmaji and Flanigan 2025)
•
49 items
•
Updated
•
1
@misc{toukmaji2025prompttranslatefinetunereinitialize,
title={Prompt, Translate, Fine-Tune, Re-Initialize, or Instruction-Tune? Adapting LLMs for In-Context Learning in Low-Resource Languages},
author={Christopher Toukmaji and Jeffrey Flanigan},
year={2025},
eprint={2506.19187},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2506.19187},
}
This model is a fine-tuned version of microsoft/phi-2 on the mc4 my dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.5307 | 1.0 | 24415 | 0.5873 |
0.7911 | 2.0 | 48830 | 0.5612 |
0.3645 | 3.0 | 73245 | 0.5288 |
0.4859 | 4.0 | 97660 | 0.5031 |
0.4305 | 5.0 | 122075 | 0.4964 |
0.3455 | 6.0 | 146490 | 0.5361 |
Base model
microsoft/phi-2