Paper and Citation

Paper: Prompt, Translate, Fine-Tune, Re-Initialize, or Instruction-Tune? Adapting LLMs for In-Context Learning in Low-Resource Languages

@misc{toukmaji2025prompttranslatefinetunereinitialize,
      title={Prompt, Translate, Fine-Tune, Re-Initialize, or Instruction-Tune? Adapting LLMs for In-Context Learning in Low-Resource Languages}, 
      author={Christopher Toukmaji and Jeffrey Flanigan},
      year={2025},
      eprint={2506.19187},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2506.19187}, 
}

laft_bur_phi

This model is a fine-tuned version of microsoft/phi-2 on the mc4 my dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5361

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 2000
  • num_epochs: 6.0

Training results

Training Loss Epoch Step Validation Loss
0.5307 1.0 24415 0.5873
0.7911 2.0 48830 0.5612
0.3645 3.0 73245 0.5288
0.4859 4.0 97660 0.5031
0.4305 5.0 122075 0.4964
0.3455 6.0 146490 0.5361

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
15
Safetensors
Model size
2.78B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for ChrisToukmaji/laft_bur_phi

Base model

microsoft/phi-2
Finetuned
(339)
this model

Dataset used to train ChrisToukmaji/laft_bur_phi

Collection including ChrisToukmaji/laft_bur_phi