This model is a quantized version of Apple's DepthPro-hf model. The model was quantized using 4-bit bitsandbytes.
Quantize code
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
)
depth_model = DepthProForDepthEstimation.from_pretrained(
"apple/DepthPro-hf",
quantization_config=quantization_config,
device_map="auto",
dtype="auto",
)
How to use it
pip install --upgrade transformers accelerate bitsandbytes
import torch
from PIL import Image
from transformers import DepthProForDepthEstimation, DepthProImageProcessorFast
device = "cuda" if torch.cuda.is_available() else "cpu"
depth_model = DepthProForDepthEstimation.from_pretrained(
"CineAI/Depth-Pro-hf-4bit",
device_map="auto",
)
image_processor = DepthProImageProcessorFast.from_pretrained("apple/DepthPro-hf")
image = Image.open("image path")
image = image.convert(mode="RGB")
inputs = image_processor(images=image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = depth_model(**inputs)
source_sizes = [(image.height, image.width)]
post_processed_output = image_processor.post_process_depth_estimation(outputs, target_sizes=source_sizes,)
depth = post_processed_output[0]["predicted_depth"]
depth_np = depth.cpu().detach().numpy()
depth_np
- Downloads last month
- 43
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
馃檵
Ask for provider support
Model tree for CineAI/Depth-Pro-hf-4bit
Base model
apple/DepthPro-hf