patchtst-tsmixup

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2566
  • Mse: 4643.9019
  • Mae: 1.1228
  • Rmse: 68.1462
  • Smape: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 256
  • eval_batch_size: 512
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 512
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Mse Mae Rmse Smape
0.3084 0.0980 1000 0.3024 5346.5903 1.2307 73.1204 153.0007
0.2929 0.1960 2000 0.2897 5068.2759 1.1988 71.1918 nan
0.2907 0.2940 3000 0.2848 4958.8062 1.1856 70.4188 nan
0.2839 0.3920 4000 0.2819 4832.9458 1.1795 69.5194 nan
0.2839 0.4901 5000 0.2792 4758.4775 1.1657 68.9817 173.3474
0.2799 0.5881 6000 0.2773 4732.7681 1.1655 68.7951 154.0682
0.2812 0.6861 7000 0.2756 4791.2764 1.1631 69.2190 inf
0.2762 0.7841 8000 0.2742 4711.9121 1.1609 68.6434 150.8088
0.2775 0.8821 9000 0.2745 4661.4844 1.1561 68.2751 nan
0.2739 0.9801 10000 0.2726 4697.7852 1.1541 68.5404 nan
0.2763 1.0781 11000 0.2718 4672.8022 1.1511 68.3579 nan
0.2736 1.1761 12000 0.2712 4646.1968 1.1528 68.1630 144.7422
0.2727 1.2741 13000 0.2699 4704.0283 1.1525 68.5859 nan
0.2705 1.3721 14000 0.2694 4732.0859 1.1485 68.7902 nan
0.2718 1.4702 15000 0.2691 4672.9360 1.1495 68.3589 nan
0.2714 1.5682 16000 0.2687 4653.2021 1.1452 68.2144 nan
0.2721 1.6662 17000 0.2677 4653.2695 1.1435 68.2149 263.4695
0.2694 1.7642 18000 0.2687 4744.7812 1.1485 68.8824 nan
0.2707 1.8622 19000 0.2680 4563.2783 1.1418 67.5520 nan
0.2701 1.9602 20000 0.2670 4582.1411 1.1379 67.6915 nan
0.2687 2.0582 21000 0.2666 4580.3374 1.1404 67.6782 203.8995
0.2698 2.1562 22000 0.2663 4663.5762 1.1435 68.2904 nan
0.2684 2.2542 23000 0.2663 4542.9971 1.1381 67.4018 160.5439
0.2692 2.3522 24000 0.2656 4628.6294 1.1399 68.0340 143.5725
0.2692 2.4503 25000 0.2654 4611.9399 1.1401 67.9113 nan
0.2674 2.5483 26000 0.2650 4631.6226 1.1373 68.0560 nan
0.2676 2.6463 27000 0.2652 4656.6133 1.1404 68.2394 261.2106
0.2701 2.7443 28000 0.2645 4583.7627 1.1386 67.7035 nan
0.2676 2.8423 29000 0.2645 4596.8721 1.1331 67.8002 147.3792
0.2671 2.9403 30000 0.2642 4660.9785 1.1388 68.2714 nan
0.2666 3.0383 31000 0.2646 4729.0498 1.1405 68.7681 nan
0.267 3.1363 32000 0.2638 4698.4321 1.1409 68.5451 nan
0.2663 3.2343 33000 0.2641 4621.0 1.1369 67.9779 nan
0.2642 3.3324 34000 0.2632 4717.3887 1.1363 68.6832 nan
0.2686 3.4304 35000 0.2633 4576.2842 1.1339 67.6482 nan
0.2639 3.5284 36000 0.2635 4640.9990 1.1401 68.1249 145.8278
0.2668 3.6264 37000 0.2631 4652.9268 1.1371 68.2124 nan
0.2685 3.7244 38000 0.2627 4674.4717 1.1338 68.3701 nan
0.2651 3.8224 39000 0.2626 4667.7871 1.1355 68.3212 nan
0.2637 3.9204 40000 0.2626 4603.3242 1.1337 67.8478 128.9741
0.2655 4.0184 41000 0.2623 4671.7549 1.1358 68.3502 nan
0.2657 4.1164 42000 0.2621 4639.7461 1.1318 68.1157 nan
0.2637 4.2144 43000 0.2619 4658.6704 1.1330 68.2545 nan
0.2649 4.3125 44000 0.2621 4717.4502 1.1337 68.6837 nan
0.2651 4.4105 45000 0.2617 4616.3667 1.1287 67.9438 nan
0.2648 4.5085 46000 0.2615 4641.1528 1.1327 68.1260 164.7345
0.2646 4.6065 47000 0.2616 4634.9507 1.1343 68.0805 nan
0.2619 4.7045 48000 0.2612 4717.5820 1.1327 68.6847 nan
0.2641 4.8025 49000 0.2612 4671.6055 1.1355 68.3491 nan
0.264 4.9005 50000 0.2613 4625.3916 1.1307 68.0102 nan
0.264 4.9985 51000 0.2607 4600.4443 1.1309 67.8266 nan
0.2646 5.0965 52000 0.2607 4653.5298 1.1327 68.2168 nan
0.2643 5.1946 53000 0.2604 4582.6050 1.1316 67.6949 nan
0.263 5.2926 54000 0.2607 4624.2041 1.1305 68.0015 nan
0.264 5.3906 55000 0.2604 4654.0234 1.1305 68.2204 nan
0.2621 5.4886 56000 0.2601 4626.9565 1.1290 68.0217 nan
0.2641 5.5866 57000 0.2604 4636.6865 1.1318 68.0932 nan
0.2649 5.6846 58000 0.2600 4662.0747 1.1305 68.2794 nan
0.2637 5.7826 59000 0.2599 4631.6445 1.1295 68.0562 nan
0.2632 5.8806 60000 0.2598 4632.5400 1.1311 68.0628 146.8735
0.263 5.9786 61000 0.2596 4634.8896 1.1297 68.0800 nan
0.2626 6.0766 62000 0.2598 4677.4688 1.1307 68.3920 nan
0.2623 6.1747 63000 0.2596 4674.2075 1.1313 68.3682 nan
0.2646 6.2727 64000 0.2595 4665.5918 1.1310 68.3051 nan
0.2631 6.3707 65000 0.2593 4672.3618 1.1285 68.3547 nan
0.2623 6.4687 66000 0.2593 4666.8711 1.1299 68.3145 nan
0.2636 6.5667 67000 0.2594 4603.8647 1.1279 67.8518 nan
0.262 6.6647 68000 0.2590 4614.9053 1.1276 67.9331 nan
0.2616 6.7627 69000 0.2591 4621.3652 1.1286 67.9806 nan
0.2623 6.8607 70000 0.2587 4653.7485 1.1297 68.2184 nan
0.2606 6.9587 71000 0.2588 4616.5127 1.1265 67.9449 nan
0.2625 7.0567 72000 0.2588 4605.3052 1.1267 67.8624 nan
0.2616 7.1548 73000 0.2586 4632.1304 1.1258 68.0598 nan
0.261 7.2528 74000 0.2584 4635.8457 1.1264 68.0870 nan
0.2624 7.3508 75000 0.2583 4700.9951 1.1278 68.5638 nan
0.2604 7.4488 76000 0.2583 4718.2422 1.1279 68.6895 nan
0.2611 7.5468 77000 0.2583 4681.1753 1.1288 68.4191 nan
0.2603 7.6448 78000 0.2581 4658.5015 1.1270 68.2532 nan
0.263 7.7428 79000 0.2581 4655.0098 1.1287 68.2276 nan
0.2593 7.8408 80000 0.2579 4674.6558 1.1277 68.3715 nan
0.2616 7.9388 81000 0.2580 4662.5923 1.1278 68.2832 nan
0.2623 8.0369 82000 0.2578 4622.4644 1.1260 67.9887 nan
0.2599 8.1349 83000 0.2578 4693.6475 1.1265 68.5102 nan
0.2606 8.2329 84000 0.2578 4664.7837 1.1271 68.2992 nan
0.2604 8.3309 85000 0.2576 4674.7075 1.1273 68.3718 nan
0.2605 8.4289 86000 0.2576 4615.8818 1.1244 67.9403 nan
0.2598 8.5269 87000 0.2575 4681.8462 1.1254 68.4240 nan
0.2606 8.6249 88000 0.2575 4662.5674 1.1251 68.2830 nan
0.2602 8.7229 89000 0.2573 4656.4746 1.1238 68.2384 nan
0.2588 8.8209 90000 0.2573 4647.8911 1.1249 68.1754 nan
0.2617 8.9189 91000 0.2573 4655.3872 1.1245 68.2304 nan
0.2617 9.0170 92000 0.2573 4648.3506 1.1258 68.1788 nan
0.2601 9.1150 93000 0.2571 4630.1865 1.1232 68.0455 nan
0.2598 9.2130 94000 0.2570 4677.0566 1.1245 68.3890 nan
0.2609 9.3110 95000 0.2570 4628.4395 1.1244 68.0326 nan
0.2596 9.4090 96000 0.2569 4638.3027 1.1245 68.1051 nan
0.2588 9.5070 97000 0.2568 4655.1597 1.1249 68.2287 nan
0.2613 9.6050 98000 0.2567 4639.6914 1.1242 68.1153 nan
0.2593 9.7030 99000 0.2568 4654.0952 1.1250 68.2209 nan
0.2593 9.8010 100000 0.2567 4644.1465 1.1229 68.1480 165.2788
0.261 9.8990 101000 0.2567 4641.4990 1.1234 68.1285 nan
0.2587 9.9971 102000 0.2566 4643.9019 1.1228 68.1462 nan

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.7.1+cu126
  • Datasets 2.17.1
  • Tokenizers 0.21.1
Downloads last month
5
Safetensors
Model size
19M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support