patchtst-tsmixup-relu

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1485
  • Mse: 229.0122
  • Mae: 0.6126
  • Rmse: 15.1332
  • Smape: 83.2157

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 448
  • eval_batch_size: 896
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 896
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Mse Mae Rmse Smape
0.1785 0.1666 1000 0.1739 433.0006 0.7291 20.8087 100.7767
0.1655 0.3333 2000 0.1654 424.8635 0.7099 20.6122 74.2051
0.1663 0.4999 3000 0.1624 381.5935 0.6823 19.5344 142.9640
0.1632 0.6666 4000 0.1599 330.2523 0.6648 18.1728 78.8419
0.162 0.8332 5000 0.1592 322.0357 0.6595 17.9454 78.0993
0.1615 0.9998 6000 0.1581 294.6714 0.6549 17.1660 79.6810
0.162 1.1665 7000 0.1573 333.3479 0.6496 18.2578 81.2097
0.1587 1.3331 8000 0.1570 263.9417 0.6429 16.2463 90.2972
0.154 1.4998 9000 0.1565 268.0528 0.6515 16.3723 83.8961
0.1562 1.6664 10000 0.1561 287.6087 0.6475 16.9590 108.2025
0.1603 1.8330 11000 0.1558 281.4109 0.6507 16.7753 77.4054
0.1557 1.9997 12000 0.1550 281.4917 0.6408 16.7777 81.8113
0.1568 2.1663 13000 0.1546 258.6138 0.6406 16.0815 89.9780
0.1556 2.3329 14000 0.1545 268.3961 0.6425 16.3828 79.0450
0.1561 2.4996 15000 0.1538 249.9753 0.6366 15.8106 88.3079
0.1546 2.6662 16000 0.1535 239.0104 0.6313 15.4600 96.2489
0.1536 2.8329 17000 0.1534 232.7196 0.6318 15.2552 73.1808
0.1531 2.9995 18000 0.1537 224.2394 0.6249 14.9746 99.7205
0.1535 3.1661 19000 0.1530 253.5844 0.6296 15.9243 80.0392
0.1532 3.3328 20000 0.1529 256.6078 0.6314 16.0190 184.8716
0.1566 3.4994 21000 0.1531 228.1704 0.6266 15.1053 90.5678
0.1547 3.6661 22000 0.1527 216.8113 0.6265 14.7245 88.1824
0.1537 3.8327 23000 0.1522 241.5133 0.6282 15.5407 73.5045
0.1531 3.9993 24000 0.1521 232.2086 0.6302 15.2384 87.4450
0.1525 4.1660 25000 0.1523 253.6224 0.6328 15.9255 88.9352
0.1525 4.3326 26000 0.1517 254.2605 0.6304 15.9455 77.5196
0.1548 4.4993 27000 0.1519 225.7644 0.6212 15.0255 82.3784
0.1527 4.6659 28000 0.1519 220.0219 0.6254 14.8331 86.0485
0.153 4.8325 29000 0.1515 258.0009 0.6347 16.0624 145.4315
0.1521 4.9992 30000 0.1516 227.8417 0.6227 15.0944 76.3474
0.151 5.1658 31000 0.1514 213.8730 0.6185 14.6244 157.4075
0.1527 5.3324 32000 0.1510 238.2835 0.6189 15.4364 571.1568
0.1529 5.4991 33000 0.1510 270.1301 0.6278 16.4356 83.5608
0.1505 5.6657 34000 0.1511 241.0177 0.6271 15.5247 76.5107
0.1521 5.8324 35000 0.1516 255.7361 0.6331 15.9918 108.9967
0.1513 5.9990 36000 0.1507 253.1635 0.6233 15.9111 85.8247
0.1502 6.1656 37000 0.1509 255.3432 0.6230 15.9795 118.9721
0.1517 6.3323 38000 0.1504 238.2068 0.6213 15.4339 79.4896
0.151 6.4989 39000 0.1508 244.4908 0.6243 15.6362 98.8420
0.1516 6.6656 40000 0.1504 229.2746 0.6231 15.1418 71.1164
0.1506 6.8322 41000 0.1501 237.0237 0.6217 15.3956 74.7138
0.1503 6.9988 42000 0.1500 240.7731 0.6206 15.5169 85.3629
0.1493 7.1655 43000 0.1501 265.2171 0.6242 16.2855 157.2147
0.1501 7.3321 44000 0.1499 247.8091 0.6219 15.7420 98.6004
0.1508 7.4988 45000 0.1497 265.8900 0.6227 16.3061 72.4383
0.1518 7.6654 46000 0.1497 249.7165 0.6216 15.8024 110.3652
0.1502 7.8320 47000 0.1496 248.1616 0.6200 15.7531 77.3612
0.1503 7.9987 48000 0.1493 237.9707 0.6190 15.4263 71.8934
0.1502 8.1653 49000 0.1494 225.7567 0.6149 15.0252 78.6202
0.1492 8.3319 50000 0.1492 258.1519 0.6185 16.0671 73.3061
0.1513 8.4986 51000 0.1491 226.3746 0.6162 15.0458 118.5835
0.1508 8.6652 52000 0.1491 236.9618 0.6171 15.3936 80.4855
0.1517 8.8319 53000 0.1490 242.2040 0.6186 15.5629 144.8560
0.1494 8.9985 54000 0.1490 237.0488 0.6174 15.3964 78.5948
0.1477 9.1651 55000 0.1488 232.7170 0.6157 15.2551 82.3074
0.1499 9.3318 56000 0.1488 236.9111 0.6168 15.3919 77.6623
0.1524 9.4984 57000 0.1487 231.8599 0.6148 15.2269 102.9215
0.1505 9.6651 58000 0.1486 230.8095 0.6139 15.1924 67.3176
0.1507 9.8317 59000 0.1485 231.5027 0.6137 15.2152 84.0686
0.1461 9.9983 60000 0.1485 229.0122 0.6126 15.1332 83.2157

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.7.1+cu126
  • Datasets 2.17.1
  • Tokenizers 0.21.1
Downloads last month
338
Safetensors
Model size
1.21M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support