patchtst-tsmixup-two-layer

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1497
  • Mse: 258.6847
  • Mae: 0.6232
  • Rmse: 16.0837
  • Smape: 70.2567

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 448
  • eval_batch_size: 896
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 896
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Mse Mae Rmse Smape
0.1786 0.1666 1000 0.1714 461.4028 0.7236 21.4803 100.4842
0.1661 0.3333 2000 0.1660 413.4870 0.7017 20.3344 76.6379
0.1675 0.4999 3000 0.1632 444.1673 0.6908 21.0753 144.1648
0.1641 0.6666 4000 0.1617 368.5459 0.6717 19.1976 187.8992
0.1631 0.8332 5000 0.1598 329.2304 0.6614 18.1447 77.3954
0.163 0.9998 6000 0.1594 376.1231 0.6678 19.3939 2604.0836
0.1631 1.1665 7000 0.1582 396.0430 0.6601 19.9008 79.8599
0.1604 1.3331 8000 0.1572 331.4156 0.6539 18.2048 89.4498
0.1552 1.4998 9000 0.1571 272.9918 0.6467 16.5225 88.8514
0.1569 1.6664 10000 0.1568 301.4679 0.6509 17.3628 88.6194
0.1613 1.8330 11000 0.1568 287.0067 0.6522 16.9413 137.6847
0.1564 1.9997 12000 0.1558 321.1451 0.6502 17.9205 126.8916
0.1572 2.1663 13000 0.1554 304.7481 0.6503 17.4570 190.2351
0.1565 2.3329 14000 0.1556 276.5483 0.6449 16.6297 103.9599
0.1571 2.4996 15000 0.1546 303.2998 0.6458 17.4155 144.8287
0.156 2.6662 16000 0.1544 278.1052 0.6376 16.6765 78.1067
0.1553 2.8329 17000 0.1543 274.6881 0.6390 16.5737 81.9482
0.1542 2.9995 18000 0.1547 239.9231 0.6360 15.4895 83.6961
0.1549 3.1661 19000 0.1541 277.2799 0.6419 16.6517 375.4867
0.1542 3.3328 20000 0.1542 275.0111 0.6375 16.5835 86.7323
0.1572 3.4994 21000 0.1536 264.1418 0.6371 16.2524 111.1521
0.1559 3.6661 22000 0.1539 271.3185 0.6393 16.4717 83.0078
0.154 3.8327 23000 0.1533 253.9782 0.6338 15.9367 96.5289
0.1542 3.9993 24000 0.1532 267.4779 0.6425 16.3548 68.1349
0.1534 4.1660 25000 0.1532 262.3679 0.6358 16.1978 83.8336
0.1533 4.3326 26000 0.1528 317.2105 0.6429 17.8104 85.2472
0.1556 4.4993 27000 0.1528 266.3440 0.6333 16.3200 116.4548
0.1537 4.6659 28000 0.1527 259.0167 0.6342 16.0940 91.6244
0.1541 4.8325 29000 0.1524 281.7036 0.6396 16.7840 75.8411
0.1527 4.9992 30000 0.1523 304.5508 0.6393 17.4514 86.2233
0.1522 5.1658 31000 0.1522 261.6904 0.6314 16.1768 77.8058
0.1538 5.3324 32000 0.1522 284.4175 0.6336 16.8647 97.7625
0.1537 5.4991 33000 0.1520 309.5190 0.6375 17.5932 134.9614
0.1516 5.6657 34000 0.1519 252.8892 0.6305 15.9025 119.1109
0.1536 5.8324 35000 0.1520 293.8005 0.6377 17.1406 84.0213
0.1528 5.9990 36000 0.1515 291.5611 0.6328 17.0752 353.8475
0.1515 6.1656 37000 0.1518 254.8325 0.6315 15.9635 85.4300
0.1529 6.3323 38000 0.1513 254.4357 0.6292 15.9510 112.0245
0.1526 6.4989 39000 0.1516 265.3687 0.6320 16.2901 86.3409
0.1526 6.6656 40000 0.1512 254.5356 0.6289 15.9542 87.9753
0.1518 6.8322 41000 0.1511 233.5401 0.6244 15.2820 122.1964
0.1518 6.9988 42000 0.1512 249.4746 0.6250 15.7948 86.1394
0.1501 7.1655 43000 0.1512 285.0164 0.6310 16.8824 94.1700
0.1515 7.3321 44000 0.1509 266.2695 0.6274 16.3178 96.5646
0.1523 7.4988 45000 0.1507 256.3644 0.6250 16.0114 223.2191
0.1524 7.6654 46000 0.1508 269.4569 0.6292 16.4151 88.9256
0.1513 7.8320 47000 0.1507 247.6273 0.6247 15.7362 77.1014
0.1517 7.9987 48000 0.1505 251.7547 0.6256 15.8668 83.9576
0.1512 8.1653 49000 0.1504 245.7318 0.6245 15.6758 79.3953
0.1502 8.3319 50000 0.1502 275.0424 0.6281 16.5844 90.1375
0.1523 8.4986 51000 0.1501 252.4250 0.6235 15.8879 89.7133
0.1521 8.6652 52000 0.1502 247.0445 0.6230 15.7176 78.6296
0.1529 8.8319 53000 0.1502 258.8629 0.6248 16.0892 nan
0.1511 8.9985 54000 0.1501 274.1158 0.6279 16.5564 90.8373
0.1489 9.1651 55000 0.1499 264.4435 0.6254 16.2617 80.3961
0.1511 9.3318 56000 0.1500 267.5066 0.6259 16.3556 76.1822
0.1536 9.4984 57000 0.1499 257.8295 0.6236 16.0571 107.1616
0.1511 9.6651 58000 0.1497 265.9769 0.6247 16.3088 66.7921
0.1521 9.8317 59000 0.1497 261.9222 0.6244 16.1840 79.6868
0.1471 9.9983 60000 0.1497 258.6847 0.6232 16.0837 70.2567

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.7.1+cu126
  • Datasets 2.17.1
  • Tokenizers 0.21.1
Downloads last month
4
Safetensors
Model size
814k params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support