patchtst-tsmixup

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1553
  • Mse: 280.0361
  • Mae: 0.6489
  • Rmse: 16.7343
  • Smape: 100.3318

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 256
  • eval_batch_size: 512
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 512
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Mse Mae Rmse Smape
0.1797 0.0952 1000 0.1756 447.3596 0.7397 21.1509 90.8971
0.1709 0.1904 2000 0.1691 425.0924 0.7153 20.6178 112.3049
0.1722 0.2857 3000 0.1662 516.2153 0.7009 22.7204 89.5236
0.1694 0.3809 4000 0.1643 321.2047 0.6708 17.9222 93.0515
0.1648 0.4761 5000 0.1626 350.6870 0.6731 18.7266 94.0748
0.1672 0.5713 6000 0.1612 370.8825 0.6797 19.2583 84.6619
0.1623 0.6666 7000 0.1605 400.0790 0.6715 20.0020 89.7598
0.1638 0.7618 8000 0.1613 387.6971 0.6771 19.6900 122.3799
0.1609 0.8570 9000 0.1602 335.3427 0.6603 18.3124 109.3877
0.1618 0.9522 10000 0.1592 318.1492 0.6688 17.8367 76.3322
0.1588 1.0474 11000 0.1586 345.3675 0.6628 18.5841 94.5032
0.1601 1.1426 12000 0.1580 326.8865 0.6540 18.0800 81.2504
0.1585 1.2379 13000 0.1575 279.7964 0.6532 16.7271 107.6181
0.1567 1.3331 14000 0.1575 328.3490 0.6622 18.1204 91.9899
0.1592 1.4283 15000 0.1567 376.8973 0.6523 19.4138 89.7952
0.16 1.5235 16000 0.1576 327.5271 0.6580 18.0977 105.7316
0.1586 1.6188 17000 0.1568 399.5775 0.6602 19.9894 88.6057
0.1593 1.7140 18000 0.1565 359.5630 0.6604 18.9621 325.5064
0.1562 1.8092 19000 0.1566 281.2739 0.6545 16.7712 80.4528
0.1601 1.9044 20000 0.1570 287.3577 0.6543 16.9516 79.5544
0.1551 1.9997 21000 0.1561 279.2150 0.6444 16.7097 102.6016
0.1532 2.0948 22000 0.1554 282.9574 0.6454 16.8213 85.0121
0.1564 2.1901 23000 0.1554 332.3758 0.6485 18.2312 76.0350
0.1568 2.2853 24000 0.1551 356.0441 0.6528 18.8691 92.2597
0.1569 2.3805 25000 0.1562 333.3135 0.6536 18.2569 180.8556
0.1569 2.4757 26000 0.1551 291.0384 0.6491 17.0598 80.7309
0.1532 2.5710 27000 0.1553 280.0361 0.6489 16.7343 100.3318

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.7.1+cu126
  • Datasets 2.17.1
  • Tokenizers 0.21.1
Downloads last month
3
Safetensors
Model size
1.21M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support