patchtst-tsmixup
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1553
- Mse: 280.0361
- Mae: 0.6489
- Rmse: 16.7343
- Smape: 100.3318
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 256
- eval_batch_size: 512
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 512
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Mse | Mae | Rmse | Smape |
---|---|---|---|---|---|---|---|
0.1797 | 0.0952 | 1000 | 0.1756 | 447.3596 | 0.7397 | 21.1509 | 90.8971 |
0.1709 | 0.1904 | 2000 | 0.1691 | 425.0924 | 0.7153 | 20.6178 | 112.3049 |
0.1722 | 0.2857 | 3000 | 0.1662 | 516.2153 | 0.7009 | 22.7204 | 89.5236 |
0.1694 | 0.3809 | 4000 | 0.1643 | 321.2047 | 0.6708 | 17.9222 | 93.0515 |
0.1648 | 0.4761 | 5000 | 0.1626 | 350.6870 | 0.6731 | 18.7266 | 94.0748 |
0.1672 | 0.5713 | 6000 | 0.1612 | 370.8825 | 0.6797 | 19.2583 | 84.6619 |
0.1623 | 0.6666 | 7000 | 0.1605 | 400.0790 | 0.6715 | 20.0020 | 89.7598 |
0.1638 | 0.7618 | 8000 | 0.1613 | 387.6971 | 0.6771 | 19.6900 | 122.3799 |
0.1609 | 0.8570 | 9000 | 0.1602 | 335.3427 | 0.6603 | 18.3124 | 109.3877 |
0.1618 | 0.9522 | 10000 | 0.1592 | 318.1492 | 0.6688 | 17.8367 | 76.3322 |
0.1588 | 1.0474 | 11000 | 0.1586 | 345.3675 | 0.6628 | 18.5841 | 94.5032 |
0.1601 | 1.1426 | 12000 | 0.1580 | 326.8865 | 0.6540 | 18.0800 | 81.2504 |
0.1585 | 1.2379 | 13000 | 0.1575 | 279.7964 | 0.6532 | 16.7271 | 107.6181 |
0.1567 | 1.3331 | 14000 | 0.1575 | 328.3490 | 0.6622 | 18.1204 | 91.9899 |
0.1592 | 1.4283 | 15000 | 0.1567 | 376.8973 | 0.6523 | 19.4138 | 89.7952 |
0.16 | 1.5235 | 16000 | 0.1576 | 327.5271 | 0.6580 | 18.0977 | 105.7316 |
0.1586 | 1.6188 | 17000 | 0.1568 | 399.5775 | 0.6602 | 19.9894 | 88.6057 |
0.1593 | 1.7140 | 18000 | 0.1565 | 359.5630 | 0.6604 | 18.9621 | 325.5064 |
0.1562 | 1.8092 | 19000 | 0.1566 | 281.2739 | 0.6545 | 16.7712 | 80.4528 |
0.1601 | 1.9044 | 20000 | 0.1570 | 287.3577 | 0.6543 | 16.9516 | 79.5544 |
0.1551 | 1.9997 | 21000 | 0.1561 | 279.2150 | 0.6444 | 16.7097 | 102.6016 |
0.1532 | 2.0948 | 22000 | 0.1554 | 282.9574 | 0.6454 | 16.8213 | 85.0121 |
0.1564 | 2.1901 | 23000 | 0.1554 | 332.3758 | 0.6485 | 18.2312 | 76.0350 |
0.1568 | 2.2853 | 24000 | 0.1551 | 356.0441 | 0.6528 | 18.8691 | 92.2597 |
0.1569 | 2.3805 | 25000 | 0.1562 | 333.3135 | 0.6536 | 18.2569 | 180.8556 |
0.1569 | 2.4757 | 26000 | 0.1551 | 291.0384 | 0.6491 | 17.0598 | 80.7309 |
0.1532 | 2.5710 | 27000 | 0.1553 | 280.0361 | 0.6489 | 16.7343 | 100.3318 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.7.1+cu126
- Datasets 2.17.1
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support