Safetensors
llava_onevision

Improve model card: Add pipeline tag, library name, code link, and sample usage

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +47 -5
README.md CHANGED
@@ -1,10 +1,12 @@
1
  ---
2
- license: apache-2.0
 
3
  datasets:
4
  - Code2Logic/GameQA-140K
5
  - Code2Logic/GameQA-5K
6
- base_model:
7
- - llava-hf/llava-onevision-qwen2-7b-ov-hf
 
8
  ---
9
 
10
  ***This model (GameQA-LLaVA-OV-7B) results from training LLaVA-OV-7B with GRPO solely on our [GameQA-5K](https://huggingface.co/datasets/Code2Logic/GameQA-5K) (sampled from the full [GameQA-140K](https://huggingface.co/datasets/Gabriel166/GameQA-140K) dataset).***
@@ -19,8 +21,48 @@ base_model:
19
 
20
  This is the first work, to the best of our knowledge, that leverages ***game code*** to synthesize multimodal reasoning data for ***training*** VLMs. Furthermore, when trained with a GRPO strategy solely on **GameQA** (synthesized via our proposed **Code2Logic** approach), multiple cutting-edge open-source models exhibit significantly enhanced out-of-domain generalization.
21
 
22
- [[πŸ“– Paper](https://arxiv.org/abs/2505.13886)] [[πŸ€— GameQA-140K Dataset](https://huggingface.co/datasets/Gabriel166/GameQA-140K)] [[πŸ€— GameQA-5K Dataset](https://huggingface.co/datasets/Code2Logic/GameQA-5K)] [[πŸ€— GameQA-InternVL3-8B](https://huggingface.co/Code2Logic/GameQA-InternVL3-8B) ] [[πŸ€— GameQA-Qwen2.5-VL-7B](https://huggingface.co/Code2Logic/GameQA-Qwen2.5-VL-7B)] [[πŸ€— GameQA-LLaVA-OV-7B](https://huggingface.co/Code2Logic/GameQA-llava-onevision-qwen2-7b-ov-hf) ]
23
 
24
  ## News
25
 
26
- * We've open-sourced the ***three*** models trained with GRPO on GameQA on [Huggingface](https://huggingface.co/Code2Logic).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ base_model:
3
+ - llava-hf/llava-onevision-qwen2-7b-ov-hf
4
  datasets:
5
  - Code2Logic/GameQA-140K
6
  - Code2Logic/GameQA-5K
7
+ license: apache-2.0
8
+ pipeline_tag: image-text-to-text
9
+ library_name: transformers
10
  ---
11
 
12
  ***This model (GameQA-LLaVA-OV-7B) results from training LLaVA-OV-7B with GRPO solely on our [GameQA-5K](https://huggingface.co/datasets/Code2Logic/GameQA-5K) (sampled from the full [GameQA-140K](https://huggingface.co/datasets/Gabriel166/GameQA-140K) dataset).***
 
21
 
22
  This is the first work, to the best of our knowledge, that leverages ***game code*** to synthesize multimodal reasoning data for ***training*** VLMs. Furthermore, when trained with a GRPO strategy solely on **GameQA** (synthesized via our proposed **Code2Logic** approach), multiple cutting-edge open-source models exhibit significantly enhanced out-of-domain generalization.
23
 
24
+ [[πŸ“– Paper](https://arxiv.org/abs/2505.13886)] [[\ud83d\udcbb Code](https://github.com/tongjingqi/Code2Logic)] [[πŸ€— GameQA-140K Dataset](https://huggingface.co/datasets/Gabriel166/GameQA-140K)] [[πŸ€— GameQA-5K Dataset](https://huggingface.co/datasets/Code2Logic/GameQA-5K)] [[πŸ€— GameQA-InternVL3-8B](https://huggingface.co/Code2Logic/GameQA-InternVL3-8B) ] [[πŸ€— GameQA-Qwen2.5-VL-7B](https://huggingface.co/Code2Logic/GameQA-Qwen2.5-VL-7B)] [[\ud83e\udd17 GameQA-LLaVA-OV-7B](https://huggingface.co/Code2Logic/GameQA-llava-onevision-qwen2-7b-ov-hf) ]
25
 
26
  ## News
27
 
28
+ * We've open-sourced the ***three*** models trained with GRPO on GameQA on [Huggingface](https://huggingface.co/Code2Logic).
29
+
30
+ ## Usage
31
+
32
+ This model is compatible with the `transformers` library. Here's how to use it for image-to-text generation:
33
+
34
+ ```python
35
+ import torch
36
+ from PIL import Image
37
+ from transformers import AutoProcessor, AutoModelForCausalLM
38
+
39
+ model_id = "Code2Logic/GameQA-llava-onevision-qwen2-7b-ov-hf"
40
+
41
+ # Load processor and model
42
+ processor = AutoProcessor.from_pretrained(model_id)
43
+ model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16).to("cuda")
44
+
45
+ # Load your image (replace with an actual image path or PIL Image object)
46
+ # Example: a screenshot of a GUI for a typical use case of this model
47
+ image = Image.open("your_gui_screenshot.jpg")
48
+
49
+ # Prepare your text prompt. The model is designed for multimodal tasks,
50
+ # so typical inputs involve both an image and a text query.
51
+ prompt = "What is highlighted in the screenshot? Provide a concise description."
52
+
53
+ # Construct the chat history format required by the model
54
+ messages = [
55
+ {"role": "user", "content": [{"type": "image"}, {"type": "text", "text": prompt}]}
56
+ ]
57
+ chat_prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
58
+
59
+ # Process inputs for the model
60
+ inputs = processor(text=chat_prompt, images=image, return_tensors="pt").to(model.device)
61
+
62
+ # Generate response
63
+ with torch.no_grad():
64
+ generated_ids = model.generate(**inputs, max_new_tokens=100) # Adjust max_new_tokens as needed
65
+ generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
66
+
67
+ print(generated_text)
68
+ ```