See axolotl config
axolotl version: 0.10.0.dev0
# === Start-up Commands ===
# curl -LsSf https://astral.sh/uv/install.sh | sh
# export PATH="$HOME/.local/bin:$PATH"
# uv venv
# source .venv/bin/activate
# git clone https://github.com/axolotl-ai-cloud/axolotl
# cd axolotl
# uv pip install torch==2.5.1 packaging ninja setuptools ftfy deepspeed huggingface_hub[cli,hf_transfer]
# uv pip install "cut-cross-entropy[transformers] @ git+https://github.com/strangedove/ml-cross-entropy.git@gemma3-multimodal"
# uv pip install apollo-torch
# uv pip install --no-build-isolation -e .[flash-attn]
# uv pip install git+https://github.com/huggingface/transformers.git
# uv pip install git+https://github.com/linkedin/Liger-Kernel.git
# export HF_HUB_ENABLE_HF_TRANSFER=1
# huggingface-cli login --token $hf_key && wandb login $wandb_key
# apt update && apt install -y libopenmpi-dev && curl -LsSf https://astral.sh/uv/install.sh | sh && export PATH="$HOME/.local/bin:$PATH" && git clone https://github.com/axolotl-ai-cloud/axolotl && uv venv && source .venv/bin/activate && cd axolotl && uv pip install torch==2.5.1 packaging ninja mpi4py setuptools ftfy deepspeed huggingface_hub[cli,hf_transfer] && uv pip install apollo-torch && uv pip install "cut-cross-entropy[transformers] @ git+https://github.com/strangedove/ml-cross-entropy.git@qwen3" && uv pip install git+https://github.com/linkedin/Liger-Kernel.git && uv pip install --no-build-isolation -e .[flash-attn] && uv pip install git+https://github.com/huggingface/transformers.git && export HF_HUB_ENABLE_HF_TRANSFER=1 && cd .. && huggingface-cli login --token $hf_key && wandb login $wandb_key
# === Model Configuration ===
base_model: Columbidae/Qwen3-16B-A3B-Base
load_in_8bit: false
load_in_4bit: false
# === HF Configuration ===
hub_model_id: Columbidae/Qwen3-16B-A3B-Tulu-Mini
hub_strategy: "every_save"
# === Training Setup ===
num_epochs: 1
micro_batch_size: 4
gradient_accumulation_steps: 1
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
# === Evaluation ===
val_set_size: 1000
evals_per_epoch: 5
#eval_steps: 20
#max_steps: 60
#eval_table_size:
eval_max_new_tokens: 256
eval_sample_packing: true
#eval_strategy: "no"
# === LoRA Configuration ===
#adapter: lora
#lora_model_dir:
#lora_r: 32
#lora_alpha: 32
#lora_dropout: 0
#lora_target_linear:
#lora_fan_in_fan_out:
#lora_target_modules:
# - gate_proj
# - down_proj
# - up_proj
# - q_proj
# - v_proj
# - k_proj
# - o_proj
#lora_mlp_kernel: true
#lora_qkv_kernel: true
#lora_o_kernel: true
# === Hyperparameter Configuration ===
optimizer: apollo_adamw_layerwise
#optimizer: paged_adamw_8bit
# Apollo-mini configuration:
optim_args: "proj=random,rank=128,scale=128.0,scale_type=tensor,update_proj_gap=100"
# Regular Apollo configuration:
# optim_args:
optim_target_modules: all_linear
learning_rate: 3e-5
lr_scheduler: cosine
#lr_scheduler: cosine_with_min_lr
#lr_scheduler_kwargs:
# cosine_min_lr: 1e-6
weight_decay: 0.01
#warmup_steps: 0
warmup_ratio: 0.025
# === Data Configuration ===
#chat_template: jinja
#chat_template_jinja: "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'assistant') %}{% set role = 'model' %}{% else %}{% set role = message['role'] %}{% endif %}{{ '<start_of_turn>' + role + '\n' + message['content'] | trim + '<end_of_turn>\n' }}{% endfor %}{% if add_generation_prompt %}{{'<start_of_turn>model\n'}}{% endif %}"
#special_tokens:
# eos_token: "<end_of_turn>"
chat_template: chatml
shuffle_merged_datasets: true
datasets:
- path: ToastyPigeon/tulu-mini
type: chat_template
dataset_prepared_path: last_run_prepared
# === Plugins ===
plugins:
- axolotl.integrations.liger.LigerPlugin
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
# === Hardware Optimization ===
gradient_checkpointing: offload
gradient_checkpointing_kwargs:
use_reentrant: false
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
#liger_fused_linear_cross_entropy: true
#unsloth_cross_entropy_loss: true
cut_cross_entropy: true
# Only if using multiple GPUs:
#deepspeed: axolotl/deepspeed_configs/zero2.json
# === Wandb Tracking ===
wandb_project: Qwen3MoE-Apollo
# wandb_entity: [WANDB_ENTITY]
# wandb_name: [WANDB_RUN_NAME]
# === Checkpointing ===
saves_per_epoch: 4
save_total_limit: 1
# === Advanced Settings ===
output_dir: ./ckpts
bf16: auto
flash_attention: true
train_on_inputs: false
group_by_length: false
save_safetensors: true
logging_steps: 1
gc_steps: 10
seed: 69
Qwen3-16B-A3B-Tulu-Mini
This model is a fine-tuned version of Columbidae/Qwen3-16B-A3B-Base on the ToastyPigeon/tulu-mini dataset. It achieves the following results on the evaluation set:
- Loss: 2.5759
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 69
- optimizer: Use OptimizerNames.APOLLO_ADAMW_LAYERWISE with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=proj=random,rank=128,scale=128.0,scale_type=tensor,update_proj_gap=100
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 31
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.2445 | 0.0008 | 1 | 3.0398 |
0.7152 | 0.2003 | 256 | 2.9816 |
1.6035 | 0.4006 | 512 | 2.8261 |
0.999 | 0.6009 | 768 | 2.6930 |
0.4284 | 0.8013 | 1024 | 2.5759 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.5.1+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support