π GalaxySD: Can AI Dream of Unseen Galaxies?
Conditional Diffusion Model for Galaxy Morphology Augmentation
π Model Description
This repository provides the trained weights for GalaxySD, a fine-tuned Stable Diffusion model designed to generate high-fidelity galaxy images from text prompts. The model demonstrates strong performance in synthesizing visually realistic galaxies that adhere closely to specified morphological characteristics, such as spiral arms, bulge prominence, and edge-on orientation.
π» How to Use
The file galaxsd_final.safetensors
contains the fine-tuned Stable Diffusion weights for the GalaxySD model. To use this model in your own pipeline:
- Make sure you have
diffusers
,transformers
,accelerate
, andsafetensors
installed:
pip install diffusers transformers accelerate safetensors
- Load and run the model:
from diffusers import StableDiffusionPipeline
import torch
pipe = StableDiffusionPipeline.from_single_file(
"galaxsd_final.safetensors",
torch_dtype=torch.float16
).to("cuda")
prompt = "sdss, spiral galaxy, loosely wound spiral arms, 2 spiral arms"
image = pipe(prompt).images[0]
image.save("output.png")
If you encounter any issues, feel free to raise them in the GalaxySD Repo or contact authors.
π Project Resources
- π Homepage
- π GalaxySD Repository
- π οΈ Trained Galaxy Embedding Tool
- ποΈ Training Dataset
- π A Contributed Catalog
π Citation
@misc{ma2025aidreamunseengalaxies,
title={Can AI Dream of Unseen Galaxies? Conditional Diffusion Model for Galaxy Morphology Augmentation},
author={Chenrui Ma and Zechang Sun and Tao Jing and Zheng Cai and Yuan-Sen Ting and Song Huang and Mingyu Li},
year={2025},
eprint={2506.16233},
archivePrefix={arXiv},
primaryClass={astro-ph.GA},
url={https://arxiv.org/abs/2506.16233},
}
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support
Model tree for CosmosDream/GalaxySD
Base model
stable-diffusion-v1-5/stable-diffusion-v1-5