Files changed (1) hide show
  1. README.md +227 -216
README.md CHANGED
@@ -1,216 +1,227 @@
1
- ---
2
- license: apache-2.0
3
- tags:
4
- - StreamlinedMemory
5
- - text-generation-inference
6
- language:
7
- - en
8
- - zh
9
- base_model:
10
- - Qwen/Qwen2.5-14B-Instruct
11
- pipeline_tag: text-generation
12
- library_name: transformers
13
- model-index:
14
- - name: Sombrero-Opus-14B-Sm1
15
- results:
16
- - task:
17
- type: text-generation
18
- name: Text Generation
19
- dataset:
20
- name: IFEval (0-Shot)
21
- type: wis-k/instruction-following-eval
22
- split: train
23
- args:
24
- num_few_shot: 0
25
- metrics:
26
- - type: inst_level_strict_acc and prompt_level_strict_acc
27
- value: 38.13
28
- name: averaged accuracy
29
- source:
30
- url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FSombrero-Opus-14B-Sm1
31
- name: Open LLM Leaderboard
32
- - task:
33
- type: text-generation
34
- name: Text Generation
35
- dataset:
36
- name: BBH (3-Shot)
37
- type: SaylorTwift/bbh
38
- split: test
39
- args:
40
- num_few_shot: 3
41
- metrics:
42
- - type: acc_norm
43
- value: 47.03
44
- name: normalized accuracy
45
- source:
46
- url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FSombrero-Opus-14B-Sm1
47
- name: Open LLM Leaderboard
48
- - task:
49
- type: text-generation
50
- name: Text Generation
51
- dataset:
52
- name: MATH Lvl 5 (4-Shot)
53
- type: lighteval/MATH-Hard
54
- split: test
55
- args:
56
- num_few_shot: 4
57
- metrics:
58
- - type: exact_match
59
- value: 56.65
60
- name: exact match
61
- source:
62
- url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FSombrero-Opus-14B-Sm1
63
- name: Open LLM Leaderboard
64
- - task:
65
- type: text-generation
66
- name: Text Generation
67
- dataset:
68
- name: GPQA (0-shot)
69
- type: Idavidrein/gpqa
70
- split: train
71
- args:
72
- num_few_shot: 0
73
- metrics:
74
- - type: acc_norm
75
- value: 20.47
76
- name: acc_norm
77
- source:
78
- url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FSombrero-Opus-14B-Sm1
79
- name: Open LLM Leaderboard
80
- - task:
81
- type: text-generation
82
- name: Text Generation
83
- dataset:
84
- name: MuSR (0-shot)
85
- type: TAUR-Lab/MuSR
86
- args:
87
- num_few_shot: 0
88
- metrics:
89
- - type: acc_norm
90
- value: 27.24
91
- name: acc_norm
92
- source:
93
- url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FSombrero-Opus-14B-Sm1
94
- name: Open LLM Leaderboard
95
- - task:
96
- type: text-generation
97
- name: Text Generation
98
- dataset:
99
- name: MMLU-PRO (5-shot)
100
- type: TIGER-Lab/MMLU-Pro
101
- config: main
102
- split: test
103
- args:
104
- num_few_shot: 5
105
- metrics:
106
- - type: acc
107
- value: 45.83
108
- name: accuracy
109
- source:
110
- url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FSombrero-Opus-14B-Sm1
111
- name: Open LLM Leaderboard
112
- ---
113
- ![asedfsadefsa.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/rXot8nUSyBv_uXeEuM27T.png)
114
-
115
- # **Sombrero-Opus-14B-Sm1**
116
-
117
- > Sombrero-Opus-14B-Sm1 is based on the Qwen 2.5 14B modality architecture, designed to enhance coding efficiency and computational reasoning. This model is optimized for streamlined memory usage, avoiding unwanted textual token generation, and excelling in coding, explanatory reasoning, mathematical problem-solving, and technical tasks. It has been fine-tuned using specialized datasets to improve code generation, structured programming logic, and problem-solving capabilities.
118
-
119
- ## **Key Improvements**
120
- 1. **Optimized for Coding**: The model specializes in generating high-quality, structured code with minimal redundant tokens, ensuring efficient execution.
121
- 2. **Enhanced Memory Utilization**: Implements streamlined memory optimization to reduce computational overhead and improve performance.
122
- 3. **Superior Reasoning Capabilities**: Excels in solving complex mathematical and algorithmic problems with logical and structured explanations.
123
- 4. **Long-Context Support**: Supports up to 128K tokens for input context and can generate up to 8K tokens in a single output, making it ideal for detailed coding responses.
124
- 5. **Reduced Unwanted Textual Tokens**: Ensures a more focused output for coding tasks by minimizing excessive textual responses.
125
-
126
- ## **Quickstart with transformers**
127
-
128
- Here is a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and generate content:
129
-
130
- ```python
131
- from transformers import AutoModelForCausalLM, AutoTokenizer
132
-
133
- model_name = "prithivMLmods/Sombrero-Opus-14B-Sm1"
134
-
135
- model = AutoModelForCausalLM.from_pretrained(
136
- model_name,
137
- torch_dtype="auto",
138
- device_map="auto"
139
- )
140
- tokenizer = AutoTokenizer.from_pretrained(model_name)
141
-
142
- prompt = "Write a Python function to find the Fibonacci sequence."
143
- messages = [
144
- {"role": "system", "content": "You are an advanced coding assistant."},
145
- {"role": "user", "content": prompt}
146
- ]
147
- text = tokenizer.apply_chat_template(
148
- messages,
149
- tokenize=False,
150
- add_generation_prompt=True
151
- )
152
- model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
153
-
154
- generated_ids = model.generate(
155
- **model_inputs,
156
- max_new_tokens=512
157
- )
158
- generated_ids = [
159
- output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
160
- ]
161
-
162
- response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
163
- print(response)
164
- ```
165
-
166
- ## **Intended Use**
167
- 1. **Code Generation & Optimization**:
168
- Designed for developers, assisting in writing, refactoring, and optimizing code across multiple programming languages.
169
-
170
- 2. **Algorithm & Mathematical Problem Solving**:
171
- Provides precise explanations and solutions for computational and mathematical problems.
172
-
173
- 3. **Technical Explanations & Documentation**:
174
- Generates clear and structured explanations for coding concepts, libraries, and APIs.
175
-
176
- 4. **Debugging Assistance**:
177
- Helps analyze code snippets, detect errors, and suggest corrections.
178
-
179
- 5. **Educational Use**:
180
- Assists students and learners by breaking down complex programming topics into easily understandable sections.
181
-
182
- 6. **Structured Data Processing**:
183
- Capable of analyzing and generating structured outputs, such as JSON, XML, and tables, making it ideal for data science applications.
184
-
185
- ## **Limitations**
186
- 1. **Hardware Requirements**:
187
- Requires high-memory GPUs or TPUs due to its large parameter size and long-context support.
188
-
189
- 2. **Potential Bias in Responses**:
190
- While designed to be neutral, outputs may still reflect biases present in training data.
191
-
192
- 3. **Inconsistent Outputs in Creative Tasks**:
193
- May produce variable results in storytelling and non-technical topics.
194
-
195
- 4. **Limited Real-World Awareness**:
196
- Does not have access to real-time events beyond its training cutoff.
197
-
198
- 5. **Error Propagation in Extended Outputs**:
199
- Minor errors in early responses may affect overall coherence in long-form code outputs.
200
-
201
- 6. **Prompt Sensitivity**:
202
- The effectiveness of responses may depend on how well the input prompt is structured.
203
- # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
204
- Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/prithivMLmods__Sombrero-Opus-14B-Sm1-details)!
205
- Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=prithivMLmods%2FSombrero-Opus-14B-Sm1&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!
206
-
207
- | Metric |Value (%)|
208
- |-------------------|--------:|
209
- |**Average** | 39.23|
210
- |IFEval (0-Shot) | 38.13|
211
- |BBH (3-Shot) | 47.03|
212
- |MATH Lvl 5 (4-Shot)| 56.65|
213
- |GPQA (0-shot) | 20.47|
214
- |MuSR (0-shot) | 27.24|
215
- |MMLU-PRO (5-shot) | 45.83|
216
-
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - StreamlinedMemory
5
+ - text-generation-inference
6
+ language:
7
+ - zho
8
+ - eng
9
+ - fra
10
+ - spa
11
+ - por
12
+ - deu
13
+ - ita
14
+ - rus
15
+ - jpn
16
+ - kor
17
+ - vie
18
+ - tha
19
+ - ara
20
+ base_model:
21
+ - Qwen/Qwen2.5-14B-Instruct
22
+ pipeline_tag: text-generation
23
+ library_name: transformers
24
+ model-index:
25
+ - name: Sombrero-Opus-14B-Sm1
26
+ results:
27
+ - task:
28
+ type: text-generation
29
+ name: Text Generation
30
+ dataset:
31
+ name: IFEval (0-Shot)
32
+ type: wis-k/instruction-following-eval
33
+ split: train
34
+ args:
35
+ num_few_shot: 0
36
+ metrics:
37
+ - type: inst_level_strict_acc and prompt_level_strict_acc
38
+ value: 38.13
39
+ name: averaged accuracy
40
+ source:
41
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FSombrero-Opus-14B-Sm1
42
+ name: Open LLM Leaderboard
43
+ - task:
44
+ type: text-generation
45
+ name: Text Generation
46
+ dataset:
47
+ name: BBH (3-Shot)
48
+ type: SaylorTwift/bbh
49
+ split: test
50
+ args:
51
+ num_few_shot: 3
52
+ metrics:
53
+ - type: acc_norm
54
+ value: 47.03
55
+ name: normalized accuracy
56
+ source:
57
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FSombrero-Opus-14B-Sm1
58
+ name: Open LLM Leaderboard
59
+ - task:
60
+ type: text-generation
61
+ name: Text Generation
62
+ dataset:
63
+ name: MATH Lvl 5 (4-Shot)
64
+ type: lighteval/MATH-Hard
65
+ split: test
66
+ args:
67
+ num_few_shot: 4
68
+ metrics:
69
+ - type: exact_match
70
+ value: 56.65
71
+ name: exact match
72
+ source:
73
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FSombrero-Opus-14B-Sm1
74
+ name: Open LLM Leaderboard
75
+ - task:
76
+ type: text-generation
77
+ name: Text Generation
78
+ dataset:
79
+ name: GPQA (0-shot)
80
+ type: Idavidrein/gpqa
81
+ split: train
82
+ args:
83
+ num_few_shot: 0
84
+ metrics:
85
+ - type: acc_norm
86
+ value: 20.47
87
+ name: acc_norm
88
+ source:
89
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FSombrero-Opus-14B-Sm1
90
+ name: Open LLM Leaderboard
91
+ - task:
92
+ type: text-generation
93
+ name: Text Generation
94
+ dataset:
95
+ name: MuSR (0-shot)
96
+ type: TAUR-Lab/MuSR
97
+ args:
98
+ num_few_shot: 0
99
+ metrics:
100
+ - type: acc_norm
101
+ value: 27.24
102
+ name: acc_norm
103
+ source:
104
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FSombrero-Opus-14B-Sm1
105
+ name: Open LLM Leaderboard
106
+ - task:
107
+ type: text-generation
108
+ name: Text Generation
109
+ dataset:
110
+ name: MMLU-PRO (5-shot)
111
+ type: TIGER-Lab/MMLU-Pro
112
+ config: main
113
+ split: test
114
+ args:
115
+ num_few_shot: 5
116
+ metrics:
117
+ - type: acc
118
+ value: 45.83
119
+ name: accuracy
120
+ source:
121
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FSombrero-Opus-14B-Sm1
122
+ name: Open LLM Leaderboard
123
+ ---
124
+ ![asedfsadefsa.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/rXot8nUSyBv_uXeEuM27T.png)
125
+
126
+ # **Sombrero-Opus-14B-Sm1**
127
+
128
+ > Sombrero-Opus-14B-Sm1 is based on the Qwen 2.5 14B modality architecture, designed to enhance coding efficiency and computational reasoning. This model is optimized for streamlined memory usage, avoiding unwanted textual token generation, and excelling in coding, explanatory reasoning, mathematical problem-solving, and technical tasks. It has been fine-tuned using specialized datasets to improve code generation, structured programming logic, and problem-solving capabilities.
129
+
130
+ ## **Key Improvements**
131
+ 1. **Optimized for Coding**: The model specializes in generating high-quality, structured code with minimal redundant tokens, ensuring efficient execution.
132
+ 2. **Enhanced Memory Utilization**: Implements streamlined memory optimization to reduce computational overhead and improve performance.
133
+ 3. **Superior Reasoning Capabilities**: Excels in solving complex mathematical and algorithmic problems with logical and structured explanations.
134
+ 4. **Long-Context Support**: Supports up to 128K tokens for input context and can generate up to 8K tokens in a single output, making it ideal for detailed coding responses.
135
+ 5. **Reduced Unwanted Textual Tokens**: Ensures a more focused output for coding tasks by minimizing excessive textual responses.
136
+
137
+ ## **Quickstart with transformers**
138
+
139
+ Here is a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and generate content:
140
+
141
+ ```python
142
+ from transformers import AutoModelForCausalLM, AutoTokenizer
143
+
144
+ model_name = "prithivMLmods/Sombrero-Opus-14B-Sm1"
145
+
146
+ model = AutoModelForCausalLM.from_pretrained(
147
+ model_name,
148
+ torch_dtype="auto",
149
+ device_map="auto"
150
+ )
151
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
152
+
153
+ prompt = "Write a Python function to find the Fibonacci sequence."
154
+ messages = [
155
+ {"role": "system", "content": "You are an advanced coding assistant."},
156
+ {"role": "user", "content": prompt}
157
+ ]
158
+ text = tokenizer.apply_chat_template(
159
+ messages,
160
+ tokenize=False,
161
+ add_generation_prompt=True
162
+ )
163
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
164
+
165
+ generated_ids = model.generate(
166
+ **model_inputs,
167
+ max_new_tokens=512
168
+ )
169
+ generated_ids = [
170
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
171
+ ]
172
+
173
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
174
+ print(response)
175
+ ```
176
+
177
+ ## **Intended Use**
178
+ 1. **Code Generation & Optimization**:
179
+ Designed for developers, assisting in writing, refactoring, and optimizing code across multiple programming languages.
180
+
181
+ 2. **Algorithm & Mathematical Problem Solving**:
182
+ Provides precise explanations and solutions for computational and mathematical problems.
183
+
184
+ 3. **Technical Explanations & Documentation**:
185
+ Generates clear and structured explanations for coding concepts, libraries, and APIs.
186
+
187
+ 4. **Debugging Assistance**:
188
+ Helps analyze code snippets, detect errors, and suggest corrections.
189
+
190
+ 5. **Educational Use**:
191
+ Assists students and learners by breaking down complex programming topics into easily understandable sections.
192
+
193
+ 6. **Structured Data Processing**:
194
+ Capable of analyzing and generating structured outputs, such as JSON, XML, and tables, making it ideal for data science applications.
195
+
196
+ ## **Limitations**
197
+ 1. **Hardware Requirements**:
198
+ Requires high-memory GPUs or TPUs due to its large parameter size and long-context support.
199
+
200
+ 2. **Potential Bias in Responses**:
201
+ While designed to be neutral, outputs may still reflect biases present in training data.
202
+
203
+ 3. **Inconsistent Outputs in Creative Tasks**:
204
+ May produce variable results in storytelling and non-technical topics.
205
+
206
+ 4. **Limited Real-World Awareness**:
207
+ Does not have access to real-time events beyond its training cutoff.
208
+
209
+ 5. **Error Propagation in Extended Outputs**:
210
+ Minor errors in early responses may affect overall coherence in long-form code outputs.
211
+
212
+ 6. **Prompt Sensitivity**:
213
+ The effectiveness of responses may depend on how well the input prompt is structured.
214
+ # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
215
+ Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/prithivMLmods__Sombrero-Opus-14B-Sm1-details)!
216
+ Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=prithivMLmods%2FSombrero-Opus-14B-Sm1&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!
217
+
218
+ | Metric |Value (%)|
219
+ |-------------------|--------:|
220
+ |**Average** | 39.23|
221
+ |IFEval (0-Shot) | 38.13|
222
+ |BBH (3-Shot) | 47.03|
223
+ |MATH Lvl 5 (4-Shot)| 56.65|
224
+ |GPQA (0-shot) | 20.47|
225
+ |MuSR (0-shot) | 27.24|
226
+ |MMLU-PRO (5-shot) | 45.83|
227
+