Ganda Gemma 1B

A fine-tuned Gemma 3 1B instruction model specialized for English-to-Luganda translation and Luganda conversational AI. The model accepts input in both English and Luganda but outputs responses exclusively in Luganda.

πŸ“Š Translation Performance

Translation Performance Comparison

Model Comparison

Model Parameters BLEU chrF++ Efficiency*
Gemma 3 4B 4B 1.1 20.05 0.28
Gemma 3 27B 27B 3.65 31.37 0.14
GPT-5 Mini N/A 5.14 36.55 N/A
Ganda Gemma 1B 1B 6.99 40.32 6.99
Gemini 2.0 Flash Large 7.94 43.38 N/A

*Efficiency = BLEU Score Γ· Parameters (in billions)

Key Performance Insights

🎯 Efficiency Leader: Achieves 6.99 BLEU per billion parameters (highest efficiency ratio)
πŸš€ Size Advantage: Outperforms Gemma 3 4B (4x larger) by 535% on BLEU score
πŸ’Ž Competitive Quality: Achieves similar performance to GPT-5 Mini with known 1B parameter count
⚑ Practical Deployment: Runs efficiently on consumer hardware while maintaining quality

Evaluation Details

  • Dataset: FLORES-200 Englishβ†’Luganda (1,012 translation pairs)
  • Metrics: BLEU (bilingual evaluation understudy) and chrF++ (character F-score)
  • Evaluation: Zero-shot translation performance

πŸš€ Quick Start

from transformers import AutoModelForCausalLM, AutoTokenizer

# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained("CraneAILabs/ganda-gemma-1b")
tokenizer = AutoTokenizer.from_pretrained("CraneAILabs/ganda-gemma-1b")

# Translate to Luganda
prompt = "Translate to Luganda: Hello, how are you today?"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100, temperature=0.3)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)

🌍 Language Capabilities

  • Input Languages: English + Luganda
  • Output Language: Luganda only
  • Primary Focus: English-to-Luganda translation and Luganda conversation

🎯 Capabilities

  • Translation: English-to-Luganda translation
  • Conversational AI: Natural dialogue in Luganda
  • Summarization: Text summarization in Luganda
  • Writing: Creative and informational writing in Luganda
  • Question Answering: General knowledge responses in Luganda

πŸ’» Usage Examples

Basic Translation

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("CraneAILabs/ganda-gemma-1b")
tokenizer = AutoTokenizer.from_pretrained("CraneAILabs/ganda-gemma-1b")

# English to Luganda translation
prompt = "Translate to Luganda: Welcome to our school"
inputs = tokenizer(prompt, return_tensors="pt")

with torch.no_grad():
    outputs = model.generate(
        **inputs,
        max_length=100,
        temperature=0.3,
        do_sample=True,
        pad_token_id=tokenizer.eos_token_id
    )

response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)

Luganda Conversation

# Direct Luganda conversation
prompt = "Oli otya! Osobola okuntuyamba leero?"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100, temperature=0.3)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)

Using the Pipeline

from transformers import pipeline

# Create a text generation pipeline
generator = pipeline(
    "text-generation",
    model="CraneAILabs/ganda-gemma-1b",
    tokenizer="CraneAILabs/ganda-gemma-1b",
    device=0 if torch.cuda.is_available() else -1
)

# Generate Luganda text
result = generator(
    "Translate to Luganda: Welcome to our school",
    max_length=100,
    temperature=0.3,
    do_sample=True
)
print(result[0]['generated_text'])

πŸ”— Related Models

🎨 Use Cases

  • Translation Apps: Offline English-Luganda translation
  • Language Learning: Practice Luganda with instant feedback
  • Cultural Apps: Create culturally aware Luganda content
  • Educational Tools: Luganda learning assistants
  • Research: Natural language processing for Luganda
  • Content Creation: Generate Luganda content for media

⚠️ Limitations

  • Language Output: Responds only in Luganda
  • Context Length: Optimized for shorter conversational inputs
  • Cultural Context: May not capture all nuances of Luganda culture
  • Regional Variations: Trained on standard Luganda, may not reflect all dialects

πŸ› οΈ Technical Details

  • Base Model: Google Gemma 3 1B Instruct
  • Fine-tuning Method: Supervised fine-tuning on English-Luganda pairs
  • Context Length: 2048 tokens
  • Precision: 16-bit floating point
  • Framework: Transformers (PyTorch)

πŸ“„ License

This model is released under the Gemma Terms of Use. Please review the terms before use.

πŸ™ Acknowledgments

  • Google: For Gemma 3 base model and research
  • Luganda Community: For language resources and cultural guidance
  • FLORES Team: For evaluation dataset and benchmarking framework

Built with ❀️ by Crane AI Labs

Ganda Gemma - Your helpful Luganda AI companion!

Downloads last month
94
Safetensors
Model size
1,000M params
Tensor type
BF16
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for CraneAILabs/ganda-gemma-1b

Finetuned
(260)
this model
Finetunes
1 model

Collection including CraneAILabs/ganda-gemma-1b