DeepSeek R1 Qwen Story Point Estimator - springxd

This model is fine-tuned on issue descriptions from springxd and tested on springxd for story point estimation.

Model Details

  • Base Model: DeepSeek R1 Distill Qwen 1.5B

  • Training Project: springxd

  • Test Project: springxd

  • Task: Story Point Estimation (Regression)

  • Architecture: PEFT (LoRA)

  • Tokenizer: DeepSeek BPE Tokenizer

  • Input: Issue titles

  • Output: Story point estimation (continuous value)

Usage

from transformers import AutoModelForSequenceClassification
from peft import PeftConfig, PeftModel
from transformers import AutoTokenizer

# Load peft config model
config = PeftConfig.from_pretrained("DEVCamiloSepulveda/1-DeepSeekR1SP-springxd")

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("DEVCamiloSepulveda/1-DeepSeekR1SP-springxd")
base_model = AutoModelForSequenceClassification.from_pretrained(
    config.base_model_name_or_path,
    num_labels=1,
    torch_dtype=torch.float16,
    device_map='auto'
)
model = PeftModel.from_pretrained(base_model, "DEVCamiloSepulveda/1-DeepSeekR1SP-springxd")

# Prepare input text
text = "Your issue description here"
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=20, padding="max_length")

# Get prediction
outputs = model(**inputs)
story_points = outputs.logits.item()

Training Details

  • Fine-tuning method: LoRA (Low-Rank Adaptation)
  • Sequence length: 20 tokens
  • Best training epoch: 0 / 20 epochs
  • Batch size: 32
  • Training time: 111.201 seconds
  • Mean Absolute Error (MAE): 2.016
  • Median Absolute Error (MdAE): 1.866

Framework versions

  • PEFT 0.14.0
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for DEVCamiloSepulveda/1-DeepSeekR1SP-springxd

Adapter
(120)
this model

Evaluation results