DEVCamiloSepulveda's picture
Upload folder using huggingface_hub
afcf77a verified
metadata
license: apache-2.0
language:
  - en
base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
pipeline_tag: text-classification
library_name: peft
tags:
  - regression
  - story-point-estimation
  - software-engineering
datasets:
  - mulestudio
  - mule
metrics:
  - mae
  - mdae
model-index:
  - name: DeepSeek-R1-Distill-Qwen-1.5B-story-point-estimation
    results:
      - task:
          type: regression
          name: Story Point Estimation
        dataset:
          name: mule Dataset
          type: mule
          split: test
        metrics:
          - type: mae
            value: 3.052
            name: Mean Absolute Error (MAE)
          - type: mdae
            value: 2.636
            name: Median Absolute Error (MdAE)

DeepSeek R1 Qwen Story Point Estimator - mulestudio - mule

This model is fine-tuned on issue descriptions from mulestudio and tested on mule for story point estimation.

Model Details

  • Base Model: DeepSeek R1 Distill Qwen 1.5B

  • Training Project: mulestudio

  • Test Project: mule

  • Task: Story Point Estimation (Regression)

  • Architecture: PEFT (LoRA)

  • Tokenizer: DeepSeek BPE Tokenizer

  • Input: Issue titles

  • Output: Story point estimation (continuous value)

Usage

from transformers import AutoModelForSequenceClassification
from peft import PeftConfig, PeftModel
from transformers import AutoTokenizer

# Load peft config model
config = PeftConfig.from_pretrained("DEVCamiloSepulveda/11-DeepSeekR1SP-mulestudio-mule")

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("DEVCamiloSepulveda/11-DeepSeekR1SP-mulestudio-mule")
base_model = AutoModelForSequenceClassification.from_pretrained(
    config.base_model_name_or_path,
    num_labels=1,
    torch_dtype=torch.float16,
    device_map='auto'
)
model = PeftModel.from_pretrained(base_model, "DEVCamiloSepulveda/11-DeepSeekR1SP-mulestudio-mule")

# Prepare input text
text = "Your issue description here"
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=20, padding="max_length")

# Get prediction
outputs = model(**inputs)
story_points = outputs.logits.item()

Training Details

  • Fine-tuning method: LoRA (Low-Rank Adaptation)
  • Sequence length: 20 tokens
  • Best training epoch: 1 / 20 epochs
  • Batch size: 32
  • Training time: 72.475 seconds
  • Mean Absolute Error (MAE): 3.052
  • Median Absolute Error (MdAE): 2.636

Framework versions

  • PEFT 0.14.0