DMRetriever: A Family of Models for Improved Text Retrieval in Disaster Management

This repository provides an overview of DMRetriever, a family of embedding and retrieval models designed for disaster-management retrieval tasks.
For details, please refer to the paper and the GitHub repository.

DMRetriever includes model variants with 33M, 109M, 335M, 596M, 4B, and 7.6B parameters.
These models are trained via a three-stage learning framework consisting of:

  1. Bidirectional Attention Adaptation
  2. Unsupervised Contrastive Pre-training
  3. Difficulty-aware Progressive Instruction Fine-tuning

All stages leverage high-quality data generated through an advanced data-refinement pipeline.
DMRetriever achieves state-of-the-art (SOTA) performance across six retrieval intents at all model scales.

DMRetriever Workflow

πŸ“š Dataset

Training data are publicly available on DMRetriever_MTT.


πŸ§ͺ Evaluation

Performance across six retrieval intents on the DisastIR-Test benchmark. The evaluation is conducted using this code.

🧩 Small Size (≀109M)

Model Scale QA QAdoc TW FC NLI STS Avg.
thenlper-gte-small 33M 18.04 9.13 10.95 49.63 37.51 55.55 30.14
arctic-embed-m 109M 33.15 14.04 8.48 35.07 38.67 56.20 30.94
thenlper-gte-base 109M 9.18 5.42 37.91 60.45 42.52 46.07 33.59
arctic-embed-m-v1.5 109M 25.76 30.41 17.95 47.97 42.88 64.16 38.19
arctic-embed-s 33M 38.58 28.81 21.33 47.21 39.85 66.96 40.46
bge-small-en-v1.5 33M 56.91 51.19 25.15 55.17 32.87 64.54 47.64
bge-base-en-v1.5 109M 51.50 52.78 46.72 59.93 41.16 68.63 53.45
DMRetriever-33M (ours) 33M 62.47† 57.03† 57.22† 60.81† 46.56† 67.57 58.61†
DMRetriever-109M (ours) 109M 63.19† 59.55† 58.88† 62.48† 46.93† 68.79† 59.97†

βš™οΈ Medium Size (137M–335M)

Model Scale QA QAdoc TW FC NLI STS Avg.
arctic-embed-m-long 137M 21.51 10.86 19.24 36.13 41.67 54.94 30.73
arctic-embed-l 335M 40.56 30.19 14.98 32.64 34.20 56.10 34.78
bge-large-en-v1.5 335M 56.76 54.45 32.20 54.90 35.11 64.47 49.65
gte-base-en-v1.5 137M 60.51 55.62 46.26 52.24 39.59 70.40 54.10
mxbai-embed-large-v1 335M 64.24 62.63 39.94 58.12 40.18 68.01 55.52
arctic-embed-m-v2.0 305M 61.22 62.20 47.01 57.79 42.29 64.51 55.84
DMRetriever-335M (ours) 335M 67.44† 62.69† 62.16† 64.42† 49.69† 70.71† 62.85†

πŸš€ Large Size (434M–1.5B)

Model Scale QA QAdoc TW FC NLI STS Avg.
arctic-embed-l-v2.0 568M 55.23 59.11 38.11 60.10 41.07 62.61 52.70
gte-large-en-v1.5 434M 67.37 58.18 39.43 52.66 34.45 66.47 53.09
Qwen3-Embedding-0.6B 596M 66.10 52.31 62.38 64.89 50.30 67.39 60.56
mulling-e5-large-instruct 560M 67.97 64.64 62.25 66.78 48.51 63.42 62.26
mulling-e5-large 560M 66.99 64.01 62.81 59.87 50.93 74.12 63.12
gte-Qwen2-1.5B-instruct 1.5B 69.85 59.17 65.09 62.73 55.51 73.58 64.32
inf-retriever-v1-1.5b 1.5B 69.41 64.29 62.99 65.39 54.03 73.92 65.01
DMRetriever-596M (ours) 596M 72.44† 67.50† 65.79† 69.15† 55.71† 74.73† 67.55†

🧠 XL Size (β‰₯4B)

Model Scale QA QAdoc TW FC NLI STS Avg.
Qwen3-Embedding-8B 7.6B 44.21 34.38 41.56 42.04 32.53 42.95 39.61
gte-Qwen2-7B-instruct 7.6B 70.24 47.41 63.08 31.62 53.71 74.88 56.82
NV-Embed-v1 7.9B 68.06 62.70 56.02 59.64 48.05 67.06 60.26
Qwen3-Embedding-4B 4B 67.20 59.14 65.28 67.16 53.61 58.51 61.82
e5-mistral-7b-instruct 7.1B 65.57 64.97 63.31 67.86 47.55 66.48 62.58
NV-Embed-v2 7.9B 74.47 69.37 42.40 68.32 58.20 76.07 64.80
inf-retriever-v1 7.1B 72.84 66.74 66.23 65.53 51.86 75.98 66.53
SFR-Embedding-Mistral 7.1B 71.41 67.14 69.45 70.31 50.93 72.67 66.99
Linq-Embed-Mistral 7.1B 74.40 70.31 64.11 70.64 52.46 71.25 67.19
DMRetriever-4B (ours) 4B 75.32† 70.23† 70.55† 71.44† 57.63 77.38† 70.42†
DMRetriever-7.6B (ours) 7.6B 76.19† 71.27† 71.11† 72.47† 58.81† 78.36† 71.37†

πŸ“¦ DMRetriever Series Model List

Model Description Backbone Backbone Type Hidden Size #Layers
DMRetriever-33M Base 33M variant MiniLM Encoder-only 384 12
DMRetriever-33M-PT Pre-trained version of 33M MiniLM Encoder-only 384 12
DMRetriever-109M Base 109M variant BERT-base-uncased Encoder-only 768 12
DMRetriever-109M-PT Pre-trained version of 109M BERT-base-uncased Encoder-only 768 12
DMRetriever-335M Base 335M variant BERT-large-uncased-WWM Encoder-only 1024 24
DMRetriever-335M-PT Pre-trained version of 335M BERT-large-uncased-WWM Encoder-only 1024 24
DMRetriever-596M Base 596M variant Qwen3-0.6B Decoder-only 1024 28
DMRetriever-596M-PT Pre-trained version of 596M Qwen3-0.6B Decoder-only 1024 28
DMRetriever-4B Base 4B variant Qwen3-4B Decoder-only 2560 36
DMRetriever-4B-PT Pre-trained version of 4B Qwen3-4B Decoder-only 2560 36
DMRetriever-7.6B Base 7.6B variant Qwen3-8B Decoder-only 4096 36
DMRetriever-7.6B-PT Pre-trained version of 7.6B Qwen3-8B Decoder-only 4096 36

πŸš€ Usage

Please refer to each model’s Hugging Face page for specific usage instructions, including input format, embedding extraction, and evaluation examples.


🧾 Citation

If you find this repository helpful, please consider citing the corresponding paper:

@article{yin2025dmretriever,
  title={DMRetriever: A Family of Models for Improved Text Retrieval in Disaster Management},
  author={Yin, Kai and Dong, Xiangjue and Liu, Chengkai and Lin, Allen and Shi, Lingfeng and Mostafavi, Ali and Caverlee, James},
  journal={arXiv preprint arXiv:2510.15087},
  year={2025}
}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support