|
|
--- |
|
|
license: apache-2.0 |
|
|
language: |
|
|
- en |
|
|
tags: |
|
|
- information-retrieval |
|
|
- LLM |
|
|
- Embedding |
|
|
- text-retrieval |
|
|
- disaster-management |
|
|
|
|
|
task_categories: |
|
|
- text-retrieval |
|
|
library_name: transformers |
|
|
dataset_tags: |
|
|
- DMIR01/DMRetriever_MTT |
|
|
--- |
|
|
|
|
|
This model is trained through the approach described in [DMRetriever: A Family of Models for Improved Text Retrieval in Disaster Management](https://www.arxiv.org/abs/2510.15087). |
|
|
The associated GitHub repository is available [here](https://github.com/KaiYin97/DMRETRIEVER). |
|
|
This model has 109M parameters. |
|
|
|
|
|
## 🧠 Model Overview |
|
|
|
|
|
**DMRetriever-109M** has the following features: |
|
|
|
|
|
- Model Type: Text Embedding |
|
|
- Supported Languages: English |
|
|
- Number of Paramaters: 109M |
|
|
- Embedding Dimension: 768 |
|
|
|
|
|
For more details, including model training, benchmark evaluation, and inference performance, please refer to our [paper](https://www.arxiv.org/abs/2510.15087), [GitHub](https://github.com/KaiYin97/DMRETRIEVER). |
|
|
|
|
|
## 📦 DMRetriever Series Model List |
|
|
|
|
|
| **Model** | **Description** | **Backbone** | **Backbone Type** | **Hidden Size** | **#Layers** | |
|
|
|:--|:--|:--|:--|:--:|:--:| |
|
|
| [DMRetriever-33M](https://huggingface.co/DMIR01/DMRetriever-33M) | Base 33M variant | MiniLM | Encoder-only | 384 | 12 | |
|
|
| [DMRetriever-33M-PT](https://huggingface.co/DMIR01/DMRetriever-33M-PT) | Pre-trained version of 33M | MiniLM | Encoder-only | 384 | 12 | |
|
|
| [DMRetriever-109M](https://huggingface.co/DMIR01/DMRetriever-109M) | Base 109M variant | BERT-base-uncased | Encoder-only | 768 | 12 | |
|
|
| [DMRetriever-109M-PT](https://huggingface.co/DMIR01/DMRetriever-109M-PT) | Pre-trained version of 109M | BERT-base-uncased | Encoder-only | 768 | 12 | |
|
|
| [DMRetriever-335M](https://huggingface.co/DMIR01/DMRetriever-335M) | Base 335M variant | BERT-large-uncased-WWM | Encoder-only | 1024 | 24 | |
|
|
| [DMRetriever-335M-PT](https://huggingface.co/DMIR01/DMRetriever-335M-PT) | Pre-trained version of 335M | BERT-large-uncased-WWM | Encoder-only | 1024 | 24 | |
|
|
| [DMRetriever-596M](https://huggingface.co/DMIR01/DMRetriever-596M) | Base 596M variant | Qwen3-0.6B | Decoder-only | 1024 | 28 | |
|
|
| [DMRetriever-596M-PT](https://huggingface.co/DMIR01/DMRetriever-596M-PT) | Pre-trained version of 596M | Qwen3-0.6B | Decoder-only | 1024 | 28 | |
|
|
| [DMRetriever-4B](https://huggingface.co/DMIR01/DMRetriever-4B) | Base 4B variant | Qwen3-4B | Decoder-only | 2560 | 36 | |
|
|
| [DMRetriever-4B-PT](https://huggingface.co/DMIR01/DMRetriever-4B-PT) | Pre-trained version of 4B | Qwen3-4B | Decoder-only | 2560 | 36 | |
|
|
| [DMRetriever-7.6B](https://huggingface.co/DMIR01/DMRetriever-7.6B) | Base 7.6B variant | Qwen3-8B | Decoder-only | 4096 | 36 | |
|
|
| [DMRetriever-7.6B-PT](https://huggingface.co/DMIR01/DMRetriever-7.6B-PT) | Pre-trained version of 7.6B | Qwen3-8B | Decoder-only | 4096 | 36 | |
|
|
|
|
|
|
|
|
## 🚀 Usage |
|
|
|
|
|
Using HuggingFace Transformers: |
|
|
```python |
|
|
import numpy as np |
|
|
import torch |
|
|
import torch.nn.functional as F |
|
|
from transformers import AutoTokenizer, AutoModel |
|
|
|
|
|
MODEL_NAME = "DMIR01/DMRetriever-109M" |
|
|
|
|
|
# Load model/tokenizer |
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
dtype = torch.float16 if device == "cuda" else torch.float32 |
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=True) |
|
|
# Some decoder-only models have no pad token; fall back to EOS if needed |
|
|
if tokenizer.pad_token is None and tokenizer.eos_token is not None: |
|
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
model = AutoModel.from_pretrained(MODEL_NAME, torch_dtype=dtype).to(device) |
|
|
model.eval() |
|
|
|
|
|
# Mean pooling over valid tokens (mask==1) |
|
|
def mean_pool(last_hidden_state: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor: |
|
|
mask = attention_mask.unsqueeze(-1).type_as(last_hidden_state) # [B, T, 1] |
|
|
summed = (last_hidden_state * mask).sum(dim=1) # [B, H] |
|
|
counts = mask.sum(dim=1).clamp(min=1e-9) # [B, 1] |
|
|
return summed / counts # [B, H] |
|
|
|
|
|
# Optional task prefixes (use for queries; keep corpus plain) |
|
|
TASK2PREFIX = { |
|
|
"FactCheck": "Given the claim, retrieve most relevant document that supports or refutes the claim", |
|
|
"NLI": "Given the premise, retrieve most relevant hypothesis that is entailed by the premise", |
|
|
"QA": "Given the question, retrieve most relevant passage that best answers the question", |
|
|
"QAdoc": "Given the question, retrieve the most relevant document that answers the question", |
|
|
"STS": "Given the sentence, retrieve the sentence with the same meaning", |
|
|
"Twitter": "Given the user query, retrieve the most relevant Twitter text that meets the request", |
|
|
} |
|
|
def with_prefix(task: str, text: str) -> str: |
|
|
p = TASK2PREFIX.get(task, "") |
|
|
return f"{p}: {text}" if p else text |
|
|
|
|
|
# Batch encode with L2 normalization (recommended for cosine/inner-product search) |
|
|
@torch.inference_mode() |
|
|
def encode_texts(texts, batch_size: int = 32, max_length: int = 512, normalize: bool = True): |
|
|
all_embs = [] |
|
|
for i in range(0, len(texts), batch_size): |
|
|
batch = texts[i:i + batch_size] |
|
|
toks = tokenizer( |
|
|
batch, |
|
|
padding=True, |
|
|
truncation=True, |
|
|
max_length=max_length, |
|
|
return_tensors="pt", |
|
|
) |
|
|
toks = {k: v.to(device) for k, v in toks.items()} |
|
|
out = model(**toks, return_dict=True) |
|
|
emb = mean_pool(out.last_hidden_state, toks["attention_mask"]) |
|
|
if normalize: |
|
|
emb = F.normalize(emb, p=2, dim=1) |
|
|
all_embs.append(emb.cpu().numpy()) |
|
|
return np.vstack(all_embs) if all_embs else np.empty((0, model.config.hidden_size), dtype=np.float32) |
|
|
|
|
|
# ---- Example: plain sentences ---- |
|
|
sentences = [ |
|
|
"A cat sits on the mat.", |
|
|
"The feline is resting on the rug.", |
|
|
"Quantum mechanics studies matter and light.", |
|
|
] |
|
|
embs = encode_texts(sentences) # shape: [N, hidden_size] |
|
|
print("Embeddings shape:", embs.shape) |
|
|
|
|
|
# Cosine similarity (embeddings are L2-normalized) |
|
|
sims = embs @ embs.T |
|
|
print("Cosine similarity matrix:\n", np.round(sims, 3)) |
|
|
|
|
|
# ---- Example: query with task prefix (QA) ---- |
|
|
qa_queries = [ |
|
|
with_prefix("QA", "Who wrote 'Pride and Prejudice'?"), |
|
|
with_prefix("QA", "What is the capital of Japan?"), |
|
|
] |
|
|
qa_embs = encode_texts(qa_queries) |
|
|
print("QA Embeddings shape:", qa_embs.shape) |
|
|
|
|
|
``` |
|
|
## 🧾 Citation |
|
|
If you find this repository helpful, please kindly consider citing the corresponding paper. Thanks! |
|
|
``` |
|
|
@article{yin2025dmretriever, |
|
|
title={DMRetriever: A Family of Models for Improved Text Retrieval in Disaster Management}, |
|
|
author={Yin, Kai and Dong, Xiangjue and Liu, Chengkai and Lin, Allen and Shi, Lingfeng and Mostafavi, Ali and Caverlee, James}, |
|
|
journal={arXiv preprint arXiv:2510.15087}, |
|
|
year={2025} |
|
|
} |
|
|
``` |
|
|
|
|
|
|