DSU-ilabAfrica's picture
End of training
d969064 verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-large
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: whisper-swahili-large-v0.1
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: sw
          split: test
          args: sw
        metrics:
          - name: Wer
            type: wer
            value: 26.32352799853929

whisper-swahili-large-v0.1

This model is a fine-tuned version of openai/whisper-large on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4162
  • Wer: 26.3235

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.1388 0.0681 250 0.6673 65.1304
0.4408 0.1362 500 0.5600 33.9259
0.3612 0.2042 750 0.4609 30.1521
0.3057 0.2723 1000 0.4162 26.3235

Framework versions

  • Transformers 4.52.0.dev0
  • Pytorch 2.6.0+cu126
  • Datasets 3.5.0
  • Tokenizers 0.21.1