File size: 3,748 Bytes
8706d07 b42066d 8706d07 b42066d 8706d07 b42066d 8706d07 b42066d 8706d07 b42066d 8706d07 b42066d 8706d07 b42066d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
---
base_model: Qwen/Qwen3-30B-A3B-Instruct-2507
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3_moe
- cognitive chains
- cognition
license: apache-2.0
language:
- en
datasets:
- Daemontatox/SOCAM
library_name: transformers
---
## Daemontatox/SOCAM-V1
### Model Description
SOCAM-V1 (Social Cognitive Agent Model – V1) is a fine-tuned large language model built on top of Qwen/Qwen3-30B-A3B-Instruct.
The model is trained to function as a Cognitive State Machine, extracting cognitive chains from natural social utterances based on Theory of Mind (ToM) reasoning.
Each cognitive chain follows the structure:
Situation ⇒ Clue ⇒ Thought ⇒ (Action + Emotion)
This provides an interpretable representation of a user’s cognitive state, supporting applications in dialogue systems, emotional support agents, and multi-agent cognitive architectures.
---
### Training Details
Base Model: Qwen/Qwen3-30B-A3B-Instruct
Fine-tuning Method: QLoRA with Unsloth + TRL
Dataset: Daemontatox/SOCAM
Adapted from the COKE dataset (Wu et al., 2024)
~45k structured samples with fields: situation, clue, thought, action, emotion
Emotions restricted to: Love, Surprise, Joyful, Sad, Angry, Fearful
### Training Parameters:
Sequence length: 2048
LoRA config: r=16, alpha=32, dropout=0.01
Optimizer: AdamW (8-bit)
Effective batch size: 256 (16 × grad acc 16)
Learning rate: 2e-4 (cosine schedule, warmup ratio 0.02)
Epochs: 2
Hardware: H100-class GPU (8-bit quantization for feasibility)
---
### Model Capabilities
Converts free-text utterances into structured cognitive chains.
Ensures separation of:
Situation (context domain)
Clue (triggering factor)
Thought (internal cognition)
Action (behavioral response)
Emotion (affective category)
Outputs deterministic JSON for easy downstream parsing.
---
⁶
### Example Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model = AutoModelForCausalLM.from_pretrained(
"Daemontatox/SOCAM-V1",
device_map="auto",
torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained("Daemontatox/SOCAM-V1")
prompt = """Situation: "I have an important exam tomorrow."
Clue: "I have studied consistently for weeks."
"""
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=256)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Expected output:
{
"situation": "I have an important exam tomorrow.",
"clue": "I have studied consistently for weeks.",
"thought": "I believe I will perform well and feel confident.",
"action": "I review lightly and get proper rest.",
"emotion": "Joyful"
}
```
---
### Limitations & Risks
The model may misclassify ambiguous emotions (e.g., Sad vs Fearful).
Outputs depend on the quality of the SOCAM dataset and may reflect dataset biases.
Not suitable for clinical or medical use.
Always validate JSON outputs before downstream use.
---
### Intended Uses
Research on machine Theory of Mind (ToM).
Multi-agent cognitive architectures (Tracker, Updater, Reviewer, Responder).
Dialogue systems requiring interpretable cognitive reasoning.
Not intended for:
Clinical diagnostics
Sensitive decision-making without human oversight
---
### Citation
If you use this model, please cite:
@misc{socam2025,
title = {SOCAM-V1: A Cognitive State Machine for Theory of Mind Reasoning},
author = {Ammar Alnagar},
year = {2025},
howpublished = {\url{https://huggingface.co/Daemontatox/SOCAM-V1}}
}
---
### Acknowledgments
Base model: Qwen/Qwen3-30B-A3B-Instruct
Dataset foundation: COKE (Wu et al., 2024)
Training libraries: Unsloth, TRL, Hugging Face Transformers |