DamarJati's picture
Update README.md
9bc6f89
metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
  - aytvill/plastic-recycling-codes
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-finetuned-eurosat
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.391304347826087
widget:
  - src: >-
      https://huggingface.co/DamarJati/plastic-recycling-codes/resolve/main/example/image1.jpg
    example_title: image1.jpg
  - src: >-
      https://huggingface.co/DamarJati/plastic-recycling-codes/resolve/main/example/image2.jpg
    example_title: image2.jpg
  - src: >-
      https://huggingface.co/DamarJati/plastic-recycling-codes/resolve/main/example/image3.jpg
    example_title: image3.jpg
language:
  - en
pipeline_tag: image-classification

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

More information needed

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-5
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 5 1.847501 0.260870
1.9354 2.0 10 1.729485 0.333333
1.9354 3.0 15 1.681863 0.391304

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3