DanaRL's picture
End of training
897fc56 verified
metadata
library_name: transformers
language:
  - ar
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - generated_from_trainer
datasets:
  - zw
metrics:
  - wer
model-index:
  - name: large-v3-turbo-zwksa1305
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: zwksa
          type: zw
          config: default
          split: train
          args: 'config: hi, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 45.656877897990725

large-v3-turbo-zwksa1305

This model is a fine-tuned version of openai/whisper-large-v3 on the zwksa dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8594
  • Wer: 45.6569

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.6356 0.8772 100 0.6373 51.2563
0.4797 1.7544 200 0.5798 47.8737
0.3037 2.6316 300 0.5865 45.8821
0.2044 3.5088 400 0.6082 45.5862
0.1288 4.3860 500 0.6568 45.0254
0.0734 5.2632 600 0.7035 45.7717
0.0558 6.1404 700 0.7563 46.1161
0.0367 7.0175 800 0.7771 45.0960
0.0196 7.8947 900 0.8203 46.0720
0.0137 8.7719 1000 0.8594 45.6569

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.3.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1