You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

Built with Axolotl

See axolotl config

axolotl version: 0.10.0.dev0

base_model: Dans-DiscountModels/Mistral-Small-3.1-24B-Base-2503-hf-DanChat
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

trust_remote_code:

# wandb configuration
wandb_project: 24b-ms-dans-personality-engine
wandb_watch:

wandb_run_id: V1.3.0-1-5 # V{Version}-{Run Number}-{Attempt Number}
wandb_log_model:

# push checkpoints to hub
hub_model_id: Dans-DiscountModels/24b-ms-dans-personality-engine-v1.3.0-TestArticle-1
# how to push checkpoints to hub
# https://huggingface.co/docs/transformers/v4.31.0/en/main_classes/trainer#transformers.TrainingArguments.hub_strategy
hub_strategy: "every_save"
# Whether to use hf `use_auth_token` for loading datasets. Useful for fetching private datasets
# Required to be true when used in combination with `push_dataset_to_hub`
hf_use_auth_token: true

# where to save the finished model to
output_dir: ./24b-ms-dans-personality-engine

save_safetensors: true

datasets:
  - path: Dans-DiscountModels/pretokenization-test-6
    ds_type: parquet
    type:

plugins:
  - axolotl.integrations.liger.LigerPlugin
  - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: false
cut_cross_entropy: true

load_in_8bit: false
load_in_4bit: false
strict: false

adapter:
lora_model_dir:

dataset_prepared_path: ./24b-ms-dans-personality-engine
val_set_size: 0.0

sequence_len: 33000

sample_packing: true
eval_sample_packing: true

pad_to_sequence_len: true

gradient_checkpointing: true

gradient_accumulation_steps: 4
micro_batch_size: 1

num_epochs: 2

optimizer: ademamix_8bit
optim_args: "beta1=0.9,beta2=0.999,beta3=0.999,alpha=5"

lr_scheduler: rex
learning_rate: 0.000001
cosine_min_lr_ratio:

max_grad_norm: 0.001

train_on_inputs: false
group_by_length: false

bf16: true
fp16: false
tf32: false

early_stopping_patience:

resume_from_checkpoint:
auto_resume_from_checkpoints: false

local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_ratio: 0.1

evals_per_epoch: 24
eval_table_size:
eval_max_new_tokens:

saves_per_epoch: 4
save_total_limit: 1

debug: false

deepspeed: deepspeed_configs/zero3_bf16.json

fsdp:
fsdp_config:

special_tokens:

24b-ms-dans-personality-engine-v1.3.0-TestArticle-1

This model is a fine-tuned version of Dans-DiscountModels/Mistral-Small-3.1-24B-Base-2503-hf-DanChat on the Dans-DiscountModels/pretokenization-test-6 dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Use ademamix_8bit and the args are: beta1=0.9,beta2=0.999,beta3=0.999,alpha=5
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 338
  • num_epochs: 2.0

Training results

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.4.1+cu121
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
8
Safetensors
Model size
23.6B params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Dans-DiscountModels/24b-ms-dans-personality-engine-v1.3.0-TestArticle-1