See axolotl config
axolotl version: 0.10.0.dev0
base_model: Dans-DiscountModels/Mistral-Small-3.1-24B-Base-2503-hf-DanChat
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code:
# wandb configuration
wandb_project: 24b-ms-dans-personality-engine
wandb_watch:
wandb_run_id: V1.3.0L-1-3 # V{Version}-{Run Number}-{Attempt Number}
wandb_log_model:
# push checkpoints to hub
hub_model_id: Dans-DiscountModels/24b-ms-dans-personality-engine-v1.3.0L-TestArticle-1
# how to push checkpoints to hub
# https://huggingface.co/docs/transformers/v4.31.0/en/main_classes/trainer#transformers.TrainingArguments.hub_strategy
hub_strategy: "every_save"
# Whether to use hf `use_auth_token` for loading datasets. Useful for fetching private datasets
# Required to be true when used in combination with `push_dataset_to_hub`
hf_use_auth_token: true
# where to save the finished model to
output_dir: ./24b-ms-dans-personality-engine
save_safetensors: true
datasets:
- path: Dans-DiscountModels/dpe-130l-m-24b-32k
split: train
ds_type: parquet
type:
test_datasets:
- path: Dans-DiscountModels/dpe-130l-m-24b-32k
split: validation
ds_type: parquet
type:
plugins:
- axolotl.integrations.liger.LigerPlugin
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: false
cut_cross_entropy: true
load_in_8bit: false
load_in_4bit: false
strict: false
adapter:
lora_model_dir:
dataset_prepared_path: ./24b-ms-dans-personality-engine-data
sequence_len: 32768
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
gradient_checkpointing: true
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 1
optimizer: ademamix_8bit
optim_args: "beta1=0.9,beta2=0.999,beta3=0.999,alpha=5"
lr_scheduler: rex
learning_rate: 0.0000012
cosine_min_lr_ratio: 0.1
max_grad_norm: 0.001
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
early_stopping_patience:
resume_from_checkpoint:
auto_resume_from_checkpoints: false
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.1
evals_per_epoch: 10
eval_table_size:
eval_max_new_tokens:
saves_per_epoch: 4
save_total_limit: 1
debug: false
deepspeed: deepspeed_configs/zero3_bf16.json
fsdp:
fsdp_config:
special_tokens:
24b-ms-dans-personality-engine-v1.3.0L-TestArticle-1
This model is a fine-tuned version of Dans-DiscountModels/Mistral-Small-3.1-24B-Base-2503-hf-DanChat on the Dans-DiscountModels/dpe-130l-m-24b-32k dataset. It achieves the following results on the evaluation set:
- Loss: 1.3214
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.2e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Use ademamix_8bit and the args are: beta1=0.9,beta2=0.999,beta3=0.999,alpha=5
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 48
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.4826 | 0.0021 | 1 | 1.4263 |
1.4024 | 0.1012 | 49 | 1.3709 |
1.4655 | 0.2024 | 98 | 1.3545 |
1.576 | 0.3036 | 147 | 1.3459 |
1.3687 | 0.4047 | 196 | 1.3396 |
1.4367 | 0.5059 | 245 | 1.3346 |
1.3409 | 0.6071 | 294 | 1.3304 |
1.4442 | 0.7083 | 343 | 1.3270 |
1.4049 | 0.8095 | 392 | 1.3242 |
1.5044 | 0.9107 | 441 | 1.3214 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.4.1+cu121
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 1,225
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for Dans-DiscountModels/24b-ms-dans-personality-engine-v1.3.0L-TestArticle-1
Base model
mistralai/Mistral-Small-3.1-24B-Base-2503