|
|
|
""" |
|
Created on Sat May 18 16:15:32 2024 |
|
@author: litav |
|
""" |
|
|
|
|
|
import numpy as np |
|
import tensorflow as tf |
|
import random |
|
import os |
|
import pandas as pd |
|
import cv2 |
|
import matplotlib.pyplot as plt |
|
from sklearn.model_selection import KFold |
|
from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Flatten |
|
from tensorflow.keras.optimizers import Adam |
|
from tensorflow.keras.models import Sequential |
|
from sklearn.metrics import accuracy_score, confusion_matrix, ConfusionMatrixDisplay |
|
from tensorflow.keras.layers import Dropout |
|
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint |
|
from sklearn.metrics import precision_score, recall_score, f1_score, classification_report |
|
|
|
|
|
|
|
import warnings |
|
warnings.filterwarnings("ignore", category=UserWarning, message=".*iCCP:.*") |
|
|
|
|
|
train_real_folder = 'datasets/training_set/real/' |
|
train_fake_folder = 'datasets/training_set/fake/' |
|
test_real_folder = 'datasets/test_set/real/' |
|
test_fake_folder = 'datasets/test_set/fake/' |
|
|
|
|
|
train_image_paths = [] |
|
train_labels = [] |
|
|
|
|
|
for filename in os.listdir(train_real_folder): |
|
image_path = os.path.join(train_real_folder, filename) |
|
label = 0 |
|
train_image_paths.append(image_path) |
|
train_labels.append(label) |
|
|
|
|
|
for filename in os.listdir(train_fake_folder): |
|
image_path = os.path.join(train_fake_folder, filename) |
|
label = 1 |
|
train_image_paths.append(image_path) |
|
train_labels.append(label) |
|
|
|
|
|
test_image_paths = [] |
|
test_labels = [] |
|
|
|
|
|
for filename in os.listdir(test_real_folder): |
|
image_path = os.path.join(test_real_folder, filename) |
|
label = 0 |
|
test_image_paths.append(image_path) |
|
test_labels.append(label) |
|
|
|
|
|
for filename in os.listdir(test_fake_folder): |
|
image_path = os.path.join(test_fake_folder, filename) |
|
label = 1 |
|
test_image_paths.append(image_path) |
|
test_labels.append(label) |
|
|
|
|
|
train_dataset = pd.DataFrame({'image_path': train_image_paths, 'label': train_labels}) |
|
test_dataset = pd.DataFrame({'image_path': test_image_paths, 'label': test_labels}) |
|
|
|
|
|
def preprocess_image(image_path): |
|
"""Loads, resizes, and normalizes an image.""" |
|
image = cv2.imread(image_path) |
|
resized_image = cv2.resize(image, (128, 128)) |
|
normalized_image = resized_image.astype(np.float32) / 255.0 |
|
return normalized_image |
|
|
|
|
|
X = np.array([preprocess_image(path) for path in train_image_paths]) |
|
Y = np.array(train_labels) |
|
|
|
|
|
def build_discriminator(input_shape, dropout_rate=0.5): |
|
model = Sequential() |
|
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=input_shape)) |
|
model.add(MaxPooling2D((2, 2))) |
|
model.add(Conv2D(64, (3, 3), activation='relu')) |
|
model.add(MaxPooling2D((2, 2))) |
|
model.add(Conv2D(64, (3, 3), activation='relu')) |
|
model.add(Flatten()) |
|
model.add(Dense(64, activation='relu')) |
|
model.add(Dropout(dropout_rate)) |
|
model.add(Dense(1, activation='sigmoid')) |
|
return model |
|
|
|
|
|
def load_previous_weights(model, fold_number): |
|
weights_file = f'model_weights/model_fold_{fold_number}.weights.h5' |
|
if os.path.exists(weights_file): |
|
model.load_weights(weights_file) |
|
print(f"Loaded weights from {weights_file}") |
|
else: |
|
print("No previous weights found.") |
|
|
|
|
|
def save_updated_weights(model, fold_number, val_accuracy, best_accuracy): |
|
weights_file = f'model_weights/model_fold_{fold_number}.weights.h5' |
|
if val_accuracy > best_accuracy: |
|
model.save_weights(weights_file) |
|
print(f"Saved updated weights to {weights_file} with val_accuracy: {val_accuracy:.4f}") |
|
return val_accuracy |
|
else: |
|
print(f"Did not save weights for fold {fold_number} as val_accuracy {val_accuracy:.4f} is not better than {best_accuracy:.4f}") |
|
return best_accuracy |
|
|
|
|
|
kf = KFold(n_splits=4, shuffle=True, random_state=42) |
|
batch_size = 32 |
|
epochs = 15 |
|
|
|
|
|
accuracy_per_fold = [] |
|
loss_per_fold = [] |
|
|
|
best_accuracies = [0] * kf.get_n_splits() |
|
|
|
|
|
|
|
for fold_number, (train_index, val_index) in enumerate(kf.split(X), 1): |
|
X_train, X_val = X[train_index], X[val_index] |
|
Y_train, Y_val = Y[train_index], Y[val_index] |
|
|
|
|
|
input_dim = X_train.shape[1:] |
|
model = build_discriminator(input_dim) |
|
model.compile(loss='binary_crossentropy', optimizer=Adam(0.0002, 0.5), metrics=['accuracy']) |
|
|
|
|
|
load_previous_weights(model, fold_number) |
|
|
|
|
|
early_stopping = EarlyStopping(monitor='val_accuracy', patience=5, restore_best_weights=True) |
|
|
|
|
|
checkpoint = ModelCheckpoint(filepath=f'best_model_weights/model_fold_{fold_number}.best.weights.h5.keras', monitor='val_accuracy', save_best_only=True, mode='max') |
|
|
|
|
|
history = model.fit(X_train, Y_train, epochs=epochs, batch_size=batch_size, verbose=2, |
|
validation_data=(X_val, Y_val), callbacks=[early_stopping, checkpoint]) |
|
|
|
|
|
average_val_accuracy = np.mean(history.history['val_accuracy']) |
|
accuracy_per_fold.append(average_val_accuracy) |
|
average_val_loss = np.mean(history.history['val_loss']) |
|
loss_per_fold.append(average_val_loss) |
|
|
|
|
|
best_accuracies[fold_number - 1] = save_updated_weights(model, fold_number, average_val_accuracy, best_accuracies[fold_number - 1]) |
|
|
|
|
|
|
|
print(f'Fold {fold_number} average accuracy: {average_val_accuracy*100:.2f}%') |
|
|
|
|
|
print(f'Average accuracy across all folds: {np.mean(accuracy_per_fold)*100:.2f}%') |
|
|
|
|
|
best_model_index = np.argmax(accuracy_per_fold) |
|
best_model_path = f'best_model_weights/model_fold_{best_model_index + 1}.best.weights.h5.keras' |
|
model.load_weights(best_model_path) |
|
|
|
|
|
test_loss, test_accuracy = model.evaluate(np.array([preprocess_image(path) for path in test_image_paths]), np.array(test_labels)) |
|
print(f"\nTest Loss: {test_loss}, Test Accuracy: {test_accuracy}") |
|
|
|
|
|
predictions = model.predict(np.array([preprocess_image(path) for path in test_image_paths])) |
|
predicted_labels = (predictions > 0.5).astype(int).flatten() |
|
|
|
|
|
true_real_correct = np.sum((np.array(test_labels) == 0) & (predicted_labels == 0)) |
|
true_real_incorrect = np.sum((np.array(test_labels) == 0) & (predicted_labels == 1)) |
|
true_fake_correct = np.sum((np.array(test_labels) == 1) & (predicted_labels == 1)) |
|
true_fake_incorrect = np.sum((np.array(test_labels) == 1) & (predicted_labels == 0)) |
|
|
|
print("\nClassification Summary:") |
|
print(f"Real images correctly classified: {true_real_correct}") |
|
print(f"Real images incorrectly classified: {true_real_incorrect}") |
|
print(f"Fake images correctly classified: {true_fake_correct}") |
|
print(f"Fake images incorrectly classified: {true_fake_incorrect}") |
|
|
|
|
|
|
|
print("\nClassification Report:") |
|
print(classification_report(test_labels, predicted_labels, target_names=['Real', 'Fake'])) |
|
|
|
print(model.summary()) |
|
|
|
|
|
|
|
cm = confusion_matrix(test_labels, predicted_labels) |
|
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=['Real', 'Fake']) |
|
disp.plot(cmap=plt.cm.Blues) |
|
plt.title("Confusion Matrix") |
|
plt.show() |
|
|
|
|
|
plt.figure(figsize=(12, 4)) |
|
plt.subplot(1, 2, 1) |
|
plt.plot(history.history['accuracy']) |
|
plt.plot(history.history['val_accuracy']) |
|
plt.title('Model accuracy') |
|
plt.ylabel('Accuracy') |
|
plt.xlabel('Epoch') |
|
plt.legend(['Train', 'Validation'], loc='upper left') |
|
plt.xticks(np.arange(0, len(history.history['accuracy']), step=1), np.arange(1, len(history.history['accuracy']) + 1, step=1)) |
|
|
|
|
|
|
|
plt.subplot(1, 2, 2) |
|
plt.plot(history.history['loss']) |
|
plt.plot(history.history['val_loss']) |
|
plt.title('Model loss') |
|
plt.ylabel('Loss') |
|
plt.xlabel('Epoch') |
|
plt.legend(['Train', 'Validation'], loc='upper left') |
|
plt.xticks(np.arange(0, len(history.history['loss']), step=1), np.arange(1, len(history.history['loss']) + 1, step=1)) |
|
|
|
|
|
plt.tight_layout() |
|
plt.show() |
|
|
|
|
|
plt.figure(figsize=(12, 4)) |
|
plt.subplot(1, 2, 1) |
|
plt.plot(range(1, kf.get_n_splits() + 1), accuracy_per_fold, marker='o') |
|
plt.title('Validation Accuracy per Fold') |
|
plt.xlabel('Fold') |
|
plt.ylabel('Accuracy') |
|
|
|
plt.subplot(1, 2, 2) |
|
plt.plot(range(1, kf.get_n_splits() + 1), loss_per_fold, marker='o') |
|
plt.title('Validation Loss per Fold') |
|
plt.xlabel('Fold') |
|
plt.ylabel('Loss') |
|
|
|
plt.tight_layout() |
|
plt |
|
|
|
|
|
|