File size: 5,609 Bytes
fa778ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f09040
fa778ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f09040
fa778ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f09040
fa778ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60b4cb8
fa778ba
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
---
license: apache-2.0
library_name: transformers
language:
- en
base_model:
- Qwen/Qwen2.5-14B
pipeline_tag: text-generation
---

# Datarus-R1-14B-preview

<div align="center">
  <img src="https://i.postimg.cc/7hsStNgm/logo-icon-2-1.png" alt="Datarus Logo" width="150"/>
  
  [![Model](https://img.shields.io/badge/Model-Datarus--R1--14B-blue)](https://huggingface.co/DatarusAI/Datarus-R1-14B-preview)
  [![License](https://img.shields.io/badge/License-Apache%202.0-green)](LICENSE)
  [![Website](https://img.shields.io/badge/Website-datarus.ai-orange)](https://datarus.ai)
  [![Demo](https://img.shields.io/badge/Demo-Try%20Now-purple)](https://chat.datarus.ai)
  [![Paper](https://img.shields.io/badge/Paper-arXiv-red)](https://arxiv.org/abs/2508.13382)
</div>

## 🚀 Overview

**Datarus-R1-14B-Preview** is a 14B-parameter open-weights language model fine-tuned from Qwen2.5-14B-Instruct, designed to act as a virtual data analyst and graduate-level problem solver. Unlike traditional models trained on isolated Q&A pairs, Datarus learns from complete analytical trajectories—including reasoning steps, code execution, error traces, self-corrections, and final conclusions—all captured in a ReAct-style notebook format.

### Key Highlights

- **🎯 State-of-the-art efficiency**: Surpasses similar-sized models and competes with 32B+ models while using 18-49% fewer tokens
- **🔄 Dual reasoning interfaces**: Supports both Agentic (ReAct) mode for interactive analysis and Reflection (CoT) mode for concise documentation
- **📊 Superior performance**: Achieves up to 30% higher accuracy on AIME 2024/2025 and LiveCodeBench
- **💡 "AHA-moment" pattern**: Exhibits efficient hypothesis refinement in 1-2 iterations, avoiding circular reasoning loops

## 🔗 Quick Links

- 🌐 **Website**: [https://datarus.ai](https://datarus.ai)
- 💬 **Try the Demo**: [https://chat.datarus.ai](https://chat.datarus.ai)
- 🛠️ **Jupyter Agent**: [GitHub Repository](https://github.com/DatarusAI/Datarus-JupyterAgent)
- 📄 **Paper**: [Datarus-R1: An Adaptive Multi-Step Reasoning LLM](https://arxiv.org/abs/2508.13382)

## 📊 Performance

### Benchmark Results

| Benchmark | Datarus-R1-14B-Preview | QwQ-32B | Phi-4-reasoning | DeepSeek-R1-Distill-14B |
|-----------|----------------|---------|-----------------|-------------------------|
| **LiveCodeBench v6** | 57.7 | 56.6 | 52.6 | 48.6 |
| **AIME 2024** | 70.1 | 76.2 | 74.6* | - |
| **AIME 2025** | 66.2 | 66.2 | 63.1* | - |
| **GPQA Diamond** | 62.1 | 60.1 | 55.0 | 58.6 |

*Reported values from official papers

### Token Efficiency and Performance

<div align="center">
    <img src="https://i.postimg.cc/NMSppNM4/perf-efficiency.png" alt="LCB-Efficiency" width="600"/>
    <img src="https://i.postimg.cc/nV341Ssf/efficiency.png" alt="Efficiency" width="600" />
</div>

## 🎯 Model Card

### Model Details

- **Model Type**: Language Model for Reasoning and Data Analysis
- **Parameters**: 14.8B
- **Training Data**: 144,000 synthetic analytical trajectories across finance, medicine, numerical analysis, and other quantitative domains + A curated collection of reasoning datasets.
- **Language**: English
- **License**: Apache 2.0

### Intended Use

#### Primary Use Cases
- **Data Analysis**: Automated data exploration, statistical analysis, and visualization
- **Mathematical Problem Solving**: Graduate-level mathematics including AIME-level problems
- **Code Generation**: Creating analytical scripts and solving programming challenges
- **Scientific Reasoning**: Complex problem-solving in physics, chemistry, and other sciences
- **Interactive Notebooks**: Building complete analysis notebooks with iterative refinement

### Dual Mode Usage

#### Agentic Mode (for interactive analysis)
- Use `<step>`, `<thought>`, `<action>`, `<action_input>`, `<observation>` tags
- Enables iterative code execution and refinement
- Best for data analysis, simulations, and exploratory tasks

#### Reflection Mode (for documentation)
- Use `<think>` and `<answer>` tags
- Produces compact, self-contained reasoning chains
- Best for mathematical proofs, explanations, and reports

## 📚 Citation

```bibtex
@article{benchaliah2025datarus,
  title={Datarus-R1: An Adaptive Multi-Step Reasoning LLM for Automated Data Analysis},
  author={Ben Chaliah, Ayoub and Dellagi, Hela},
  journal={arXiv preprint arXiv:2508.13382},
  year={2025}
}
```

## 🤝 Contributing

We welcome contributions! Please see our [GitHub repository](https://github.com/DatarusAI/Datarus-JupyterAgent) for:
- Bug reports and feature requests
- Pull requests
- Discussion forums

## 📄 License

This model is released under the Apache 2.0 License.

## 🙏 Acknowledgments

We thank the Qwen team for the excellent base model and the open-source community for their valuable contributions.

## 📧 Contact

- **Email**: [email protected], [email protected]
- **Website**: [https://datarus.ai](https://datarus.ai)
- **Demo**: [https://chat.datarus.ai](https://chat.datarus.ai)

---

<div align="center">
  <strong>Experience the future of AI-powered data analysis with Datarus-R1</strong>
  
  [Try Demo](https://chat.datarus.ai) | [View Code](https://github.com/DatarusAI/Datarus-JupyterAgent) | [Read Paper](https://arxiv.org/abs/2508.13382)
</div>

## ⭐ Support

If you find this model and Agent pipeline useful, please consider __Like/Star__! Your support helps us continue improving the project.

Found a bug or have a feature request? Please open an issue on GitHub.

---

<p align="center">Made with ❤️ by the Datarus Team from Paris</p>