Model Card for Llama-3.3-Argunaut-1-70B-SFT

This model is a fine-tuned version of meta-llama/Llama-3.3-70B-Instruct. It has been trained using TRL.

Quick start

from transformers import pipeline

question = "Are you familiar with Argdown syntax? What's its purpose?"
generator = pipeline("text-generation", model="DebateLabKIT/Llama-3.1-Argunaut-1-8B-SFT", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])

SFT dataset mixture

Dataset Weight (examples) Weight (tokens)
DebateLabKIT/deepa2-conversations 25% 49%
DebateLabKIT/deep-argmap-conversations 25% 18%
allenai/tulu-3-sft-mixture 50% 33%

Training procedure

Trained with SFT on 1M examples and for 1 epoch with

  • context length 8196
  • packing (trl implementation)
  • spectrum (top 30 percent)
# Training parameters
num_train_epochs: 1
per_device_train_batch_size: 2
gradient_accumulation_steps: 8
gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
learning_rate: 2.0e-6  # following _Tülu 3_ recipe
lr_scheduler_type: cosine
warmup_ratio: 0.1

Hardware: 4 x H100 GPUs.

This work was performed on the HoreKa supercomputer funded by the Ministry of Science, Research and the Arts Baden-Württemberg and by the Federal Ministry of Education and Research.

Framework versions

  • TRL: 0.12.1
  • Transformers: 4.46.3
  • Pytorch: 2.4.1
  • Datasets: 3.1.0
  • Tokenizers: 0.20.3

Credits

This work wouldn't be possible without all the great contributions from the open LLM community. Thank you! Special kudos go to

Downloads last month
180
Safetensors
Model size
70.6B params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for DebateLabKIT/Llama-3.3-Argunaut-1-70B-SFT

Finetuned
(117)
this model
Quantizations
3 models

Datasets used to train DebateLabKIT/Llama-3.3-Argunaut-1-70B-SFT