metadata
language:
- en
- it
library_name: transformers
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
model-index:
- name: Llama-3.1-8b-ITA
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 79.17
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepMount00/Llama-3.1-8b-ITA
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 30.93
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepMount00/Llama-3.1-8b-ITA
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 10.88
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepMount00/Llama-3.1-8b-ITA
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 5.03
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepMount00/Llama-3.1-8b-ITA
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 11.4
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepMount00/Llama-3.1-8b-ITA
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 31.96
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepMount00/Llama-3.1-8b-ITA
name: Open LLM Leaderboard
Model Architecture
- Base Model: Meta-Llama-3.1-8B-Instruct
- Specialization: Italian Language
How to Use
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
MODEL_NAME = "DeepMount00/Llama-3.1-8b-Ita"
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.bfloat16).eval()
model.to(device)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
def generate_answer(prompt):
messages = [
{"role": "user", "content": prompt},
]
model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device)
generated_ids = model.generate(model_inputs, max_new_tokens=200, do_sample=True,
temperature=0.001)
decoded = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
return decoded[0]
prompt = "Come si apre un file json in python?"
answer = generate_answer(prompt)
print(answer)
Developer
[Michele Montebovi]
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 28.23 |
IFEval (0-Shot) | 79.17 |
BBH (3-Shot) | 30.93 |
MATH Lvl 5 (4-Shot) | 10.88 |
GPQA (0-shot) | 5.03 |
MuSR (0-shot) | 11.40 |
MMLU-PRO (5-shot) | 31.96 |