Add new SentenceTransformer model with an openvino backend
#1
by
vumichien
- opened
- 1_Pooling/config.json +9 -9
- README.md +838 -838
- config.json +24 -24
- config_sentence_transformers.json +9 -9
- modules.json +13 -13
- sentence_bert_config.json +3 -3
- special_tokens_map.json +37 -37
- tokenizer_config.json +64 -64
- vocab.txt +0 -0
1_Pooling/config.json
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
-
{
|
2 |
-
"word_embedding_dimension": 768,
|
3 |
-
"pooling_mode_cls_token": true,
|
4 |
-
"pooling_mode_mean_tokens": false,
|
5 |
-
"pooling_mode_max_tokens": false,
|
6 |
-
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
-
"pooling_mode_weightedmean_tokens": false,
|
8 |
-
"pooling_mode_lasttoken": false,
|
9 |
-
"include_prompt": true
|
10 |
}
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
}
|
README.md
CHANGED
@@ -1,839 +1,839 @@
|
|
1 |
-
---
|
2 |
-
tags:
|
3 |
-
- sentence-transformers
|
4 |
-
- sentence-similarity
|
5 |
-
- feature-extraction
|
6 |
-
- generated_from_trainer
|
7 |
-
- dataset_size:356381
|
8 |
-
- loss:CategoricalContrastiveLoss
|
9 |
-
widget:
|
10 |
-
- source_sentence: 科目:コンクリート。名称:基礎コンクリート。
|
11 |
-
sentences:
|
12 |
-
- 科目:コンクリート。名称:免震上部コンクリート。
|
13 |
-
- 科目:コンクリート。名称:立上り壁コンクリート。
|
14 |
-
- 科目:コンクリート。名称:地上部コンクリート。
|
15 |
-
- source_sentence: 科目:コンクリート。名称:高流動コンクリート。
|
16 |
-
sentences:
|
17 |
-
- 科目:タイル。名称:踊場床タイル張り。
|
18 |
-
- 科目:コンクリート。名称:普通コンクリート。
|
19 |
-
- 科目:タイル。名称:海街デッキ床タイル。
|
20 |
-
- source_sentence: 科目:コンクリート。名称:免震下部鉄筋コンクリート。
|
21 |
-
sentences:
|
22 |
-
- 科目:コンクリート。名称:捨てコンクリート。
|
23 |
-
- 科目:コンクリート。名称:基礎コンクリート。
|
24 |
-
- 科目:コンクリート。名称:地上部コンクリート。
|
25 |
-
- source_sentence: 科目:タイル。名称:汚垂タイル。
|
26 |
-
sentences:
|
27 |
-
- 科目:コンクリート。名称:構造体強度補正。
|
28 |
-
- 科目:タイル。名称:屋外階段踊場タイル張り。
|
29 |
-
- 科目:タイル。名称:段鼻磁器質タイル。
|
30 |
-
- source_sentence: 科目:タイル。名称:ドライエリア床タイル。
|
31 |
-
sentences:
|
32 |
-
- 科目:タイル。名称:段鼻タイル。
|
33 |
-
- 科目:タイル。名称:屋外階段踊場タイル張り。
|
34 |
-
- 科目:タイル。名称:風除床磁器質タイル。
|
35 |
-
pipeline_tag: sentence-similarity
|
36 |
-
library_name: sentence-transformers
|
37 |
-
---
|
38 |
-
|
39 |
-
# SentenceTransformer
|
40 |
-
|
41 |
-
This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
42 |
-
|
43 |
-
## Model Details
|
44 |
-
|
45 |
-
### Model Description
|
46 |
-
- **Model Type:** Sentence Transformer
|
47 |
-
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
|
48 |
-
- **Maximum Sequence Length:** 512 tokens
|
49 |
-
- **Output Dimensionality:** 768 dimensions
|
50 |
-
- **Similarity Function:** Cosine Similarity
|
51 |
-
<!-- - **Training Dataset:** Unknown -->
|
52 |
-
<!-- - **Language:** Unknown -->
|
53 |
-
<!-- - **License:** Unknown -->
|
54 |
-
|
55 |
-
### Model Sources
|
56 |
-
|
57 |
-
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
58 |
-
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
59 |
-
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
60 |
-
|
61 |
-
### Full Model Architecture
|
62 |
-
|
63 |
-
```
|
64 |
-
SentenceTransformer(
|
65 |
-
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
66 |
-
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
67 |
-
)
|
68 |
-
```
|
69 |
-
|
70 |
-
## Usage
|
71 |
-
|
72 |
-
### Direct Usage (Sentence Transformers)
|
73 |
-
|
74 |
-
First install the Sentence Transformers library:
|
75 |
-
|
76 |
-
```bash
|
77 |
-
pip install -U sentence-transformers
|
78 |
-
```
|
79 |
-
|
80 |
-
Then you can load this model and run inference.
|
81 |
-
```python
|
82 |
-
from sentence_transformers import SentenceTransformer
|
83 |
-
|
84 |
-
# Download from the 🤗 Hub
|
85 |
-
model = SentenceTransformer("Detomo/cl-nagoya-sup-simcse-ja-nss-v1_0_8_5")
|
86 |
-
# Run inference
|
87 |
-
sentences = [
|
88 |
-
'科目:タイル。名称:ドライエリア床タイル。',
|
89 |
-
'科目:タイル。名称:屋外階段踊場タイル張り。',
|
90 |
-
'科目:タイル。名称:段鼻タイル。',
|
91 |
-
]
|
92 |
-
embeddings = model.encode(sentences)
|
93 |
-
print(embeddings.shape)
|
94 |
-
# [3, 768]
|
95 |
-
|
96 |
-
# Get the similarity scores for the embeddings
|
97 |
-
similarities = model.similarity(embeddings, embeddings)
|
98 |
-
print(similarities.shape)
|
99 |
-
# [3, 3]
|
100 |
-
```
|
101 |
-
|
102 |
-
<!--
|
103 |
-
### Direct Usage (Transformers)
|
104 |
-
|
105 |
-
<details><summary>Click to see the direct usage in Transformers</summary>
|
106 |
-
|
107 |
-
</details>
|
108 |
-
-->
|
109 |
-
|
110 |
-
<!--
|
111 |
-
### Downstream Usage (Sentence Transformers)
|
112 |
-
|
113 |
-
You can finetune this model on your own dataset.
|
114 |
-
|
115 |
-
<details><summary>Click to expand</summary>
|
116 |
-
|
117 |
-
</details>
|
118 |
-
-->
|
119 |
-
|
120 |
-
<!--
|
121 |
-
### Out-of-Scope Use
|
122 |
-
|
123 |
-
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
124 |
-
-->
|
125 |
-
|
126 |
-
<!--
|
127 |
-
## Bias, Risks and Limitations
|
128 |
-
|
129 |
-
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
130 |
-
-->
|
131 |
-
|
132 |
-
<!--
|
133 |
-
### Recommendations
|
134 |
-
|
135 |
-
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
136 |
-
-->
|
137 |
-
|
138 |
-
## Training Details
|
139 |
-
|
140 |
-
### Training Dataset
|
141 |
-
|
142 |
-
#### Unnamed Dataset
|
143 |
-
|
144 |
-
* Size: 356,381 training samples
|
145 |
-
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
|
146 |
-
* Approximate statistics based on the first 1000 samples:
|
147 |
-
| | sentence1 | sentence2 | label |
|
148 |
-
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------|
|
149 |
-
| type | string | string | int |
|
150 |
-
| details | <ul><li>min: 11 tokens</li><li>mean: 13.78 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 14.8 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>0: ~74.10%</li><li>1: ~2.60%</li><li>2: ~23.30%</li></ul> |
|
151 |
-
* Samples:
|
152 |
-
| sentence1 | sentence2 | label |
|
153 |
-
|:-----------------------------------------|:-------------------------------------------------|:---------------|
|
154 |
-
| <code>科目:コンクリート。名称:免震基礎天端グラウト注入。</code> | <code>科目:コンクリート。名称:免震BPL下部充填コンクリート打設手間。</code> | <code>0</code> |
|
155 |
-
| <code>科目:コンクリート。名称:免震基礎天端グラウト注入。</code> | <code>科目:コンクリート。名称:免震下部コンクリート打設手間。</code> | <code>0</code> |
|
156 |
-
| <code>科目:コンクリート。名称:免震基礎天端グラウト注入。</code> | <code>科目:コンクリート。名称:免震下部(外周基礎梁)コンクリート打設手間。</code> | <code>0</code> |
|
157 |
-
* Loss: <code>sentence_transformer_lib.categorical_constrastive_loss.CategoricalContrastiveLoss</code>
|
158 |
-
|
159 |
-
### Training Hyperparameters
|
160 |
-
#### Non-Default Hyperparameters
|
161 |
-
|
162 |
-
- `per_device_train_batch_size`: 256
|
163 |
-
- `per_device_eval_batch_size`: 256
|
164 |
-
- `learning_rate`: 1e-05
|
165 |
-
- `weight_decay`: 0.01
|
166 |
-
- `num_train_epochs`: 4
|
167 |
-
- `warmup_ratio`: 0.2
|
168 |
-
- `fp16`: True
|
169 |
-
|
170 |
-
#### All Hyperparameters
|
171 |
-
<details><summary>Click to expand</summary>
|
172 |
-
|
173 |
-
- `overwrite_output_dir`: False
|
174 |
-
- `do_predict`: False
|
175 |
-
- `eval_strategy`: no
|
176 |
-
- `prediction_loss_only`: True
|
177 |
-
- `per_device_train_batch_size`: 256
|
178 |
-
- `per_device_eval_batch_size`: 256
|
179 |
-
- `per_gpu_train_batch_size`: None
|
180 |
-
- `per_gpu_eval_batch_size`: None
|
181 |
-
- `gradient_accumulation_steps`: 1
|
182 |
-
- `eval_accumulation_steps`: None
|
183 |
-
- `torch_empty_cache_steps`: None
|
184 |
-
- `learning_rate`: 1e-05
|
185 |
-
- `weight_decay`: 0.01
|
186 |
-
- `adam_beta1`: 0.9
|
187 |
-
- `adam_beta2`: 0.999
|
188 |
-
- `adam_epsilon`: 1e-08
|
189 |
-
- `max_grad_norm`: 1.0
|
190 |
-
- `num_train_epochs`: 4
|
191 |
-
- `max_steps`: -1
|
192 |
-
- `lr_scheduler_type`: linear
|
193 |
-
- `lr_scheduler_kwargs`: {}
|
194 |
-
- `warmup_ratio`: 0.2
|
195 |
-
- `warmup_steps`: 0
|
196 |
-
- `log_level`: passive
|
197 |
-
- `log_level_replica`: warning
|
198 |
-
- `log_on_each_node`: True
|
199 |
-
- `logging_nan_inf_filter`: True
|
200 |
-
- `save_safetensors`: True
|
201 |
-
- `save_on_each_node`: False
|
202 |
-
- `save_only_model`: False
|
203 |
-
- `restore_callback_states_from_checkpoint`: False
|
204 |
-
- `no_cuda`: False
|
205 |
-
- `use_cpu`: False
|
206 |
-
- `use_mps_device`: False
|
207 |
-
- `seed`: 42
|
208 |
-
- `data_seed`: None
|
209 |
-
- `jit_mode_eval`: False
|
210 |
-
- `use_ipex`: False
|
211 |
-
- `bf16`: False
|
212 |
-
- `fp16`: True
|
213 |
-
- `fp16_opt_level`: O1
|
214 |
-
- `half_precision_backend`: auto
|
215 |
-
- `bf16_full_eval`: False
|
216 |
-
- `fp16_full_eval`: False
|
217 |
-
- `tf32`: None
|
218 |
-
- `local_rank`: 0
|
219 |
-
- `ddp_backend`: None
|
220 |
-
- `tpu_num_cores`: None
|
221 |
-
- `tpu_metrics_debug`: False
|
222 |
-
- `debug`: []
|
223 |
-
- `dataloader_drop_last`: False
|
224 |
-
- `dataloader_num_workers`: 0
|
225 |
-
- `dataloader_prefetch_factor`: None
|
226 |
-
- `past_index`: -1
|
227 |
-
- `disable_tqdm`: False
|
228 |
-
- `remove_unused_columns`: True
|
229 |
-
- `label_names`: None
|
230 |
-
- `load_best_model_at_end`: False
|
231 |
-
- `ignore_data_skip`: False
|
232 |
-
- `fsdp`: []
|
233 |
-
- `fsdp_min_num_params`: 0
|
234 |
-
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
235 |
-
- `fsdp_transformer_layer_cls_to_wrap`: None
|
236 |
-
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
237 |
-
- `deepspeed`: None
|
238 |
-
- `label_smoothing_factor`: 0.0
|
239 |
-
- `optim`: adamw_torch
|
240 |
-
- `optim_args`: None
|
241 |
-
- `adafactor`: False
|
242 |
-
- `group_by_length`: False
|
243 |
-
- `length_column_name`: length
|
244 |
-
- `ddp_find_unused_parameters`: None
|
245 |
-
- `ddp_bucket_cap_mb`: None
|
246 |
-
- `ddp_broadcast_buffers`: False
|
247 |
-
- `dataloader_pin_memory`: True
|
248 |
-
- `dataloader_persistent_workers`: False
|
249 |
-
- `skip_memory_metrics`: True
|
250 |
-
- `use_legacy_prediction_loop`: False
|
251 |
-
- `push_to_hub`: False
|
252 |
-
- `resume_from_checkpoint`: None
|
253 |
-
- `hub_model_id`: None
|
254 |
-
- `hub_strategy`: every_save
|
255 |
-
- `hub_private_repo`: None
|
256 |
-
- `hub_always_push`: False
|
257 |
-
- `gradient_checkpointing`: False
|
258 |
-
- `gradient_checkpointing_kwargs`: None
|
259 |
-
- `include_inputs_for_metrics`: False
|
260 |
-
- `include_for_metrics`: []
|
261 |
-
- `eval_do_concat_batches`: True
|
262 |
-
- `fp16_backend`: auto
|
263 |
-
- `push_to_hub_model_id`: None
|
264 |
-
- `push_to_hub_organization`: None
|
265 |
-
- `mp_parameters`:
|
266 |
-
- `auto_find_batch_size`: False
|
267 |
-
- `full_determinism`: False
|
268 |
-
- `torchdynamo`: None
|
269 |
-
- `ray_scope`: last
|
270 |
-
- `ddp_timeout`: 1800
|
271 |
-
- `torch_compile`: False
|
272 |
-
- `torch_compile_backend`: None
|
273 |
-
- `torch_compile_mode`: None
|
274 |
-
- `include_tokens_per_second`: False
|
275 |
-
- `include_num_input_tokens_seen`: False
|
276 |
-
- `neftune_noise_alpha`: None
|
277 |
-
- `optim_target_modules`: None
|
278 |
-
- `batch_eval_metrics`: False
|
279 |
-
- `eval_on_start`: False
|
280 |
-
- `use_liger_kernel`: False
|
281 |
-
- `eval_use_gather_object`: False
|
282 |
-
- `average_tokens_across_devices`: False
|
283 |
-
- `prompts`: None
|
284 |
-
- `batch_sampler`: batch_sampler
|
285 |
-
- `multi_dataset_batch_sampler`: proportional
|
286 |
-
|
287 |
-
</details>
|
288 |
-
|
289 |
-
### Training Logs
|
290 |
-
<details><summary>Click to expand</summary>
|
291 |
-
|
292 |
-
| Epoch | Step | Training Loss |
|
293 |
-
|:------:|:----:|:-------------:|
|
294 |
-
| 0.0072 | 10 | 0.2157 |
|
295 |
-
| 0.0144 | 20 | 0.1965 |
|
296 |
-
| 0.0215 | 30 | 0.164 |
|
297 |
-
| 0.0287 | 40 | 0.1199 |
|
298 |
-
| 0.0359 | 50 | 0.0913 |
|
299 |
-
| 0.0431 | 60 | 0.0687 |
|
300 |
-
| 0.0503 | 70 | 0.0462 |
|
301 |
-
| 0.0574 | 80 | 0.0459 |
|
302 |
-
| 0.0646 | 90 | 0.0424 |
|
303 |
-
| 0.0718 | 100 | 0.0416 |
|
304 |
-
| 0.0790 | 110 | 0.0377 |
|
305 |
-
| 0.0861 | 120 | 0.0472 |
|
306 |
-
| 0.0933 | 130 | 0.0437 |
|
307 |
-
| 0.1005 | 140 | 0.0332 |
|
308 |
-
| 0.1077 | 150 | 0.0411 |
|
309 |
-
| 0.1149 | 160 | 0.0361 |
|
310 |
-
| 0.1220 | 170 | 0.037 |
|
311 |
-
| 0.1292 | 180 | 0.0325 |
|
312 |
-
| 0.1364 | 190 | 0.0386 |
|
313 |
-
| 0.1436 | 200 | 0.0398 |
|
314 |
-
| 0.1508 | 210 | 0.0415 |
|
315 |
-
| 0.1579 | 220 | 0.0327 |
|
316 |
-
| 0.1651 | 230 | 0.0425 |
|
317 |
-
| 0.1723 | 240 | 0.0437 |
|
318 |
-
| 0.1795 | 250 | 0.0365 |
|
319 |
-
| 0.1866 | 260 | 0.028 |
|
320 |
-
| 0.1938 | 270 | 0.0412 |
|
321 |
-
| 0.2010 | 280 | 0.0424 |
|
322 |
-
| 0.2082 | 290 | 0.0382 |
|
323 |
-
| 0.2154 | 300 | 0.0282 |
|
324 |
-
| 0.2225 | 310 | 0.0358 |
|
325 |
-
| 0.2297 | 320 | 0.0311 |
|
326 |
-
| 0.2369 | 330 | 0.0339 |
|
327 |
-
| 0.2441 | 340 | 0.0313 |
|
328 |
-
| 0.2513 | 350 | 0.0333 |
|
329 |
-
| 0.2584 | 360 | 0.0238 |
|
330 |
-
| 0.2656 | 370 | 0.0367 |
|
331 |
-
| 0.2728 | 380 | 0.0295 |
|
332 |
-
| 0.2800 | 390 | 0.0286 |
|
333 |
-
| 0.2872 | 400 | 0.0358 |
|
334 |
-
| 0.2943 | 410 | 0.0288 |
|
335 |
-
| 0.3015 | 420 | 0.032 |
|
336 |
-
| 0.3087 | 430 | 0.0323 |
|
337 |
-
| 0.3159 | 440 | 0.0284 |
|
338 |
-
| 0.3230 | 450 | 0.0297 |
|
339 |
-
| 0.3302 | 460 | 0.0266 |
|
340 |
-
| 0.3374 | 470 | 0.0317 |
|
341 |
-
| 0.3446 | 480 | 0.0298 |
|
342 |
-
| 0.3518 | 490 | 0.0272 |
|
343 |
-
| 0.3589 | 500 | 0.0307 |
|
344 |
-
| 0.3661 | 510 | 0.0337 |
|
345 |
-
| 0.3733 | 520 | 0.0268 |
|
346 |
-
| 0.3805 | 530 | 0.0286 |
|
347 |
-
| 0.3877 | 540 | 0.0283 |
|
348 |
-
| 0.3948 | 550 | 0.0293 |
|
349 |
-
| 0.4020 | 560 | 0.0299 |
|
350 |
-
| 0.4092 | 570 | 0.0231 |
|
351 |
-
| 0.4164 | 580 | 0.0308 |
|
352 |
-
| 0.4235 | 590 | 0.0294 |
|
353 |
-
| 0.4307 | 600 | 0.0309 |
|
354 |
-
| 0.4379 | 610 | 0.0255 |
|
355 |
-
| 0.4451 | 620 | 0.0269 |
|
356 |
-
| 0.4523 | 630 | 0.0226 |
|
357 |
-
| 0.4594 | 640 | 0.028 |
|
358 |
-
| 0.4666 | 650 | 0.027 |
|
359 |
-
| 0.4738 | 660 | 0.0365 |
|
360 |
-
| 0.4810 | 670 | 0.0264 |
|
361 |
-
| 0.4882 | 680 | 0.0212 |
|
362 |
-
| 0.4953 | 690 | 0.0311 |
|
363 |
-
| 0.5025 | 700 | 0.0266 |
|
364 |
-
| 0.5097 | 710 | 0.0203 |
|
365 |
-
| 0.5169 | 720 | 0.0207 |
|
366 |
-
| 0.5240 | 730 | 0.0348 |
|
367 |
-
| 0.5312 | 740 | 0.0227 |
|
368 |
-
| 0.5384 | 750 | 0.0237 |
|
369 |
-
| 0.5456 | 760 | 0.0201 |
|
370 |
-
| 0.5528 | 770 | 0.0257 |
|
371 |
-
| 0.5599 | 780 | 0.0266 |
|
372 |
-
| 0.5671 | 790 | 0.0276 |
|
373 |
-
| 0.5743 | 800 | 0.0271 |
|
374 |
-
| 0.5815 | 810 | 0.0238 |
|
375 |
-
| 0.5887 | 820 | 0.0217 |
|
376 |
-
| 0.5958 | 830 | 0.018 |
|
377 |
-
| 0.6030 | 840 | 0.0223 |
|
378 |
-
| 0.6102 | 850 | 0.0208 |
|
379 |
-
| 0.6174 | 860 | 0.0248 |
|
380 |
-
| 0.6246 | 870 | 0.0264 |
|
381 |
-
| 0.6317 | 880 | 0.0198 |
|
382 |
-
| 0.6389 | 890 | 0.0215 |
|
383 |
-
| 0.6461 | 900 | 0.0193 |
|
384 |
-
| 0.6533 | 910 | 0.0191 |
|
385 |
-
| 0.6604 | 920 | 0.0205 |
|
386 |
-
| 0.6676 | 930 | 0.0219 |
|
387 |
-
| 0.6748 | 940 | 0.0229 |
|
388 |
-
| 0.6820 | 950 | 0.0234 |
|
389 |
-
| 0.6892 | 960 | 0.0225 |
|
390 |
-
| 0.6963 | 970 | 0.0185 |
|
391 |
-
| 0.7035 | 980 | 0.0174 |
|
392 |
-
| 0.7107 | 990 | 0.0169 |
|
393 |
-
| 0.7179 | 1000 | 0.0218 |
|
394 |
-
| 0.7251 | 1010 | 0.0141 |
|
395 |
-
| 0.7322 | 1020 | 0.0221 |
|
396 |
-
| 0.7394 | 1030 | 0.0185 |
|
397 |
-
| 0.7466 | 1040 | 0.0219 |
|
398 |
-
| 0.7538 | 1050 | 0.0183 |
|
399 |
-
| 0.7609 | 1060 | 0.0153 |
|
400 |
-
| 0.7681 | 1070 | 0.0168 |
|
401 |
-
| 0.7753 | 1080 | 0.0177 |
|
402 |
-
| 0.7825 | 1090 | 0.0177 |
|
403 |
-
| 0.7897 | 1100 | 0.0179 |
|
404 |
-
| 0.7968 | 1110 | 0.0181 |
|
405 |
-
| 0.8040 | 1120 | 0.02 |
|
406 |
-
| 0.8112 | 1130 | 0.0186 |
|
407 |
-
| 0.8184 | 1140 | 0.0185 |
|
408 |
-
| 0.8256 | 1150 | 0.0162 |
|
409 |
-
| 0.8327 | 1160 | 0.0156 |
|
410 |
-
| 0.8399 | 1170 | 0.0141 |
|
411 |
-
| 0.8471 | 1180 | 0.0152 |
|
412 |
-
| 0.8543 | 1190 | 0.0146 |
|
413 |
-
| 0.8615 | 1200 | 0.018 |
|
414 |
-
| 0.8686 | 1210 | 0.0194 |
|
415 |
-
| 0.8758 | 1220 | 0.0148 |
|
416 |
-
| 0.8830 | 1230 | 0.0183 |
|
417 |
-
| 0.8902 | 1240 | 0.0124 |
|
418 |
-
| 0.8973 | 1250 | 0.0141 |
|
419 |
-
| 0.9045 | 1260 | 0.0193 |
|
420 |
-
| 0.9117 | 1270 | 0.0169 |
|
421 |
-
| 0.9189 | 1280 | 0.0165 |
|
422 |
-
| 0.9261 | 1290 | 0.0101 |
|
423 |
-
| 0.9332 | 1300 | 0.0195 |
|
424 |
-
| 0.9404 | 1310 | 0.0168 |
|
425 |
-
| 0.9476 | 1320 | 0.0207 |
|
426 |
-
| 0.9548 | 1330 | 0.018 |
|
427 |
-
| 0.9620 | 1340 | 0.0116 |
|
428 |
-
| 0.9691 | 1350 | 0.0175 |
|
429 |
-
| 0.9763 | 1360 | 0.0138 |
|
430 |
-
| 0.9835 | 1370 | 0.0209 |
|
431 |
-
| 0.9907 | 1380 | 0.0145 |
|
432 |
-
| 0.9978 | 1390 | 0.0138 |
|
433 |
-
| 1.0050 | 1400 | 0.0123 |
|
434 |
-
| 1.0122 | 1410 | 0.0145 |
|
435 |
-
| 1.0194 | 1420 | 0.0135 |
|
436 |
-
| 1.0266 | 1430 | 0.0115 |
|
437 |
-
| 1.0337 | 1440 | 0.014 |
|
438 |
-
| 1.0409 | 1450 | 0.0106 |
|
439 |
-
| 1.0481 | 1460 | 0.0102 |
|
440 |
-
| 1.0553 | 1470 | 0.0133 |
|
441 |
-
| 1.0625 | 1480 | 0.008 |
|
442 |
-
| 1.0696 | 1490 | 0.0134 |
|
443 |
-
| 1.0768 | 1500 | 0.0106 |
|
444 |
-
| 1.0840 | 1510 | 0.0151 |
|
445 |
-
| 1.0912 | 1520 | 0.0168 |
|
446 |
-
| 1.0983 | 1530 | 0.0093 |
|
447 |
-
| 1.1055 | 1540 | 0.0132 |
|
448 |
-
| 1.1127 | 1550 | 0.0115 |
|
449 |
-
| 1.1199 | 1560 | 0.0096 |
|
450 |
-
| 1.1271 | 1570 | 0.012 |
|
451 |
-
| 1.1342 | 1580 | 0.0119 |
|
452 |
-
| 1.1414 | 1590 | 0.0108 |
|
453 |
-
| 1.1486 | 1600 | 0.013 |
|
454 |
-
| 1.1558 | 1610 | 0.0109 |
|
455 |
-
| 1.1630 | 1620 | 0.0131 |
|
456 |
-
| 1.1701 | 1630 | 0.0093 |
|
457 |
-
| 1.1773 | 1640 | 0.0126 |
|
458 |
-
| 1.1845 | 1650 | 0.009 |
|
459 |
-
| 1.1917 | 1660 | 0.0106 |
|
460 |
-
| 1.1989 | 1670 | 0.0102 |
|
461 |
-
| 1.2060 | 1680 | 0.0089 |
|
462 |
-
| 1.2132 | 1690 | 0.0096 |
|
463 |
-
| 1.2204 | 1700 | 0.0084 |
|
464 |
-
| 1.2276 | 1710 | 0.0099 |
|
465 |
-
| 1.2347 | 1720 | 0.0074 |
|
466 |
-
| 1.2419 | 1730 | 0.0131 |
|
467 |
-
| 1.2491 | 1740 | 0.0125 |
|
468 |
-
| 1.2563 | 1750 | 0.0102 |
|
469 |
-
| 1.2635 | 1760 | 0.0117 |
|
470 |
-
| 1.2706 | 1770 | 0.0099 |
|
471 |
-
| 1.2778 | 1780 | 0.0078 |
|
472 |
-
| 1.2850 | 1790 | 0.0095 |
|
473 |
-
| 1.2922 | 1800 | 0.0079 |
|
474 |
-
| 1.2994 | 1810 | 0.0069 |
|
475 |
-
| 1.3065 | 1820 | 0.0121 |
|
476 |
-
| 1.3137 | 1830 | 0.0101 |
|
477 |
-
| 1.3209 | 1840 | 0.0151 |
|
478 |
-
| 1.3281 | 1850 | 0.0107 |
|
479 |
-
| 1.3352 | 1860 | 0.0125 |
|
480 |
-
| 1.3424 | 1870 | 0.0111 |
|
481 |
-
| 1.3496 | 1880 | 0.0091 |
|
482 |
-
| 1.3568 | 1890 | 0.0082 |
|
483 |
-
| 1.3640 | 1900 | 0.0092 |
|
484 |
-
| 1.3711 | 1910 | 0.0107 |
|
485 |
-
| 1.3783 | 1920 | 0.0066 |
|
486 |
-
| 1.3855 | 1930 | 0.0141 |
|
487 |
-
| 1.3927 | 1940 | 0.0126 |
|
488 |
-
| 1.3999 | 1950 | 0.009 |
|
489 |
-
| 1.4070 | 1960 | 0.0116 |
|
490 |
-
| 1.4142 | 1970 | 0.0121 |
|
491 |
-
| 1.4214 | 1980 | 0.0098 |
|
492 |
-
| 1.4286 | 1990 | 0.0108 |
|
493 |
-
| 1.4358 | 2000 | 0.0103 |
|
494 |
-
| 1.4429 | 2010 | 0.0118 |
|
495 |
-
| 1.4501 | 2020 | 0.0143 |
|
496 |
-
| 1.4573 | 2030 | 0.0082 |
|
497 |
-
| 1.4645 | 2040 | 0.0077 |
|
498 |
-
| 1.4716 | 2050 | 0.0102 |
|
499 |
-
| 1.4788 | 2060 | 0.0093 |
|
500 |
-
| 1.4860 | 2070 | 0.0084 |
|
501 |
-
| 1.4932 | 2080 | 0.0105 |
|
502 |
-
| 1.5004 | 2090 | 0.0091 |
|
503 |
-
| 1.5075 | 2100 | 0.0094 |
|
504 |
-
| 1.5147 | 2110 | 0.0092 |
|
505 |
-
| 1.5219 | 2120 | 0.0117 |
|
506 |
-
| 1.5291 | 2130 | 0.0085 |
|
507 |
-
| 1.5363 | 2140 | 0.0069 |
|
508 |
-
| 1.5434 | 2150 | 0.0114 |
|
509 |
-
| 1.5506 | 2160 | 0.0077 |
|
510 |
-
| 1.5578 | 2170 | 0.0092 |
|
511 |
-
| 1.5650 | 2180 | 0.0093 |
|
512 |
-
| 1.5721 | 2190 | 0.0076 |
|
513 |
-
| 1.5793 | 2200 | 0.0098 |
|
514 |
-
| 1.5865 | 2210 | 0.01 |
|
515 |
-
| 1.5937 | 2220 | 0.01 |
|
516 |
-
| 1.6009 | 2230 | 0.0092 |
|
517 |
-
| 1.6080 | 2240 | 0.0096 |
|
518 |
-
| 1.6152 | 2250 | 0.0077 |
|
519 |
-
| 1.6224 | 2260 | 0.0147 |
|
520 |
-
| 1.6296 | 2270 | 0.0087 |
|
521 |
-
| 1.6368 | 2280 | 0.0106 |
|
522 |
-
| 1.6439 | 2290 | 0.007 |
|
523 |
-
| 1.6511 | 2300 | 0.0091 |
|
524 |
-
| 1.6583 | 2310 | 0.0083 |
|
525 |
-
| 1.6655 | 2320 | 0.0113 |
|
526 |
-
| 1.6726 | 2330 | 0.0076 |
|
527 |
-
| 1.6798 | 2340 | 0.0096 |
|
528 |
-
| 1.6870 | 2350 | 0.0087 |
|
529 |
-
| 1.6942 | 2360 | 0.0068 |
|
530 |
-
| 1.7014 | 2370 | 0.0064 |
|
531 |
-
| 1.7085 | 2380 | 0.0088 |
|
532 |
-
| 1.7157 | 2390 | 0.0052 |
|
533 |
-
| 1.7229 | 2400 | 0.0088 |
|
534 |
-
| 1.7301 | 2410 | 0.0068 |
|
535 |
-
| 1.7373 | 2420 | 0.0072 |
|
536 |
-
| 1.7444 | 2430 | 0.0076 |
|
537 |
-
| 1.7516 | 2440 | 0.0078 |
|
538 |
-
| 1.7588 | 2450 | 0.0066 |
|
539 |
-
| 1.7660 | 2460 | 0.0086 |
|
540 |
-
| 1.7732 | 2470 | 0.0051 |
|
541 |
-
| 1.7803 | 2480 | 0.0115 |
|
542 |
-
| 1.7875 | 2490 | 0.0059 |
|
543 |
-
| 1.7947 | 2500 | 0.0088 |
|
544 |
-
| 1.8019 | 2510 | 0.0078 |
|
545 |
-
| 1.8090 | 2520 | 0.0057 |
|
546 |
-
| 1.8162 | 2530 | 0.0076 |
|
547 |
-
| 1.8234 | 2540 | 0.0077 |
|
548 |
-
| 1.8306 | 2550 | 0.009 |
|
549 |
-
| 1.8378 | 2560 | 0.0073 |
|
550 |
-
| 1.8449 | 2570 | 0.009 |
|
551 |
-
| 1.8521 | 2580 | 0.0094 |
|
552 |
-
| 1.8593 | 2590 | 0.0068 |
|
553 |
-
| 1.8665 | 2600 | 0.0081 |
|
554 |
-
| 1.8737 | 2610 | 0.004 |
|
555 |
-
| 1.8808 | 2620 | 0.0077 |
|
556 |
-
| 1.8880 | 2630 | 0.0072 |
|
557 |
-
| 1.8952 | 2640 | 0.0061 |
|
558 |
-
| 1.9024 | 2650 | 0.0077 |
|
559 |
-
| 1.9095 | 2660 | 0.0074 |
|
560 |
-
| 1.9167 | 2670 | 0.0077 |
|
561 |
-
| 1.9239 | 2680 | 0.0073 |
|
562 |
-
| 1.9311 | 2690 | 0.0096 |
|
563 |
-
| 1.9383 | 2700 | 0.006 |
|
564 |
-
| 1.9454 | 2710 | 0.0092 |
|
565 |
-
| 1.9526 | 2720 | 0.005 |
|
566 |
-
| 1.9598 | 2730 | 0.0045 |
|
567 |
-
| 1.9670 | 2740 | 0.0071 |
|
568 |
-
| 1.9742 | 2750 | 0.0061 |
|
569 |
-
| 1.9813 | 2760 | 0.0073 |
|
570 |
-
| 1.9885 | 2770 | 0.0073 |
|
571 |
-
| 1.9957 | 2780 | 0.0067 |
|
572 |
-
| 2.0029 | 2790 | 0.0054 |
|
573 |
-
| 2.0101 | 2800 | 0.0044 |
|
574 |
-
| 2.0172 | 2810 | 0.0045 |
|
575 |
-
| 2.0244 | 2820 | 0.005 |
|
576 |
-
| 2.0316 | 2830 | 0.0066 |
|
577 |
-
| 2.0388 | 2840 | 0.0038 |
|
578 |
-
| 2.0459 | 2850 | 0.0051 |
|
579 |
-
| 2.0531 | 2860 | 0.0039 |
|
580 |
-
| 2.0603 | 2870 | 0.0051 |
|
581 |
-
| 2.0675 | 2880 | 0.0056 |
|
582 |
-
| 2.0747 | 2890 | 0.0054 |
|
583 |
-
| 2.0818 | 2900 | 0.0069 |
|
584 |
-
| 2.0890 | 2910 | 0.006 |
|
585 |
-
| 2.0962 | 2920 | 0.0074 |
|
586 |
-
| 2.1034 | 2930 | 0.0067 |
|
587 |
-
| 2.1106 | 2940 | 0.0044 |
|
588 |
-
| 2.1177 | 2950 | 0.0065 |
|
589 |
-
| 2.1249 | 2960 | 0.0066 |
|
590 |
-
| 2.1321 | 2970 | 0.0044 |
|
591 |
-
| 2.1393 | 2980 | 0.0041 |
|
592 |
-
| 2.1464 | 2990 | 0.0066 |
|
593 |
-
| 2.1536 | 3000 | 0.0046 |
|
594 |
-
| 2.1608 | 3010 | 0.0061 |
|
595 |
-
| 2.1680 | 3020 | 0.0039 |
|
596 |
-
| 2.1752 | 3030 | 0.0048 |
|
597 |
-
| 2.1823 | 3040 | 0.0059 |
|
598 |
-
| 2.1895 | 3050 | 0.0067 |
|
599 |
-
| 2.1967 | 3060 | 0.005 |
|
600 |
-
| 2.2039 | 3070 | 0.0028 |
|
601 |
-
| 2.2111 | 3080 | 0.0055 |
|
602 |
-
| 2.2182 | 3090 | 0.0032 |
|
603 |
-
| 2.2254 | 3100 | 0.0074 |
|
604 |
-
| 2.2326 | 3110 | 0.0052 |
|
605 |
-
| 2.2398 | 3120 | 0.0058 |
|
606 |
-
| 2.2469 | 3130 | 0.0067 |
|
607 |
-
| 2.2541 | 3140 | 0.0065 |
|
608 |
-
| 2.2613 | 3150 | 0.0036 |
|
609 |
-
| 2.2685 | 3160 | 0.005 |
|
610 |
-
| 2.2757 | 3170 | 0.0083 |
|
611 |
-
| 2.2828 | 3180 | 0.0038 |
|
612 |
-
| 2.2900 | 3190 | 0.0044 |
|
613 |
-
| 2.2972 | 3200 | 0.0057 |
|
614 |
-
| 2.3044 | 3210 | 0.0042 |
|
615 |
-
| 2.3116 | 3220 | 0.0037 |
|
616 |
-
| 2.3187 | 3230 | 0.0061 |
|
617 |
-
| 2.3259 | 3240 | 0.0038 |
|
618 |
-
| 2.3331 | 3250 | 0.0051 |
|
619 |
-
| 2.3403 | 3260 | 0.0076 |
|
620 |
-
| 2.3475 | 3270 | 0.005 |
|
621 |
-
| 2.3546 | 3280 | 0.0042 |
|
622 |
-
| 2.3618 | 3290 | 0.005 |
|
623 |
-
| 2.3690 | 3300 | 0.0077 |
|
624 |
-
| 2.3762 | 3310 | 0.0067 |
|
625 |
-
| 2.3833 | 3320 | 0.008 |
|
626 |
-
| 2.3905 | 3330 | 0.0077 |
|
627 |
-
| 2.3977 | 3340 | 0.0052 |
|
628 |
-
| 2.4049 | 3350 | 0.0055 |
|
629 |
-
| 2.4121 | 3360 | 0.0059 |
|
630 |
-
| 2.4192 | 3370 | 0.0042 |
|
631 |
-
| 2.4264 | 3380 | 0.0044 |
|
632 |
-
| 2.4336 | 3390 | 0.0055 |
|
633 |
-
| 2.4408 | 3400 | 0.0048 |
|
634 |
-
| 2.4480 | 3410 | 0.0035 |
|
635 |
-
| 2.4551 | 3420 | 0.0068 |
|
636 |
-
| 2.4623 | 3430 | 0.007 |
|
637 |
-
| 2.4695 | 3440 | 0.0059 |
|
638 |
-
| 2.4767 | 3450 | 0.0037 |
|
639 |
-
| 2.4838 | 3460 | 0.0049 |
|
640 |
-
| 2.4910 | 3470 | 0.0042 |
|
641 |
-
| 2.4982 | 3480 | 0.004 |
|
642 |
-
| 2.5054 | 3490 | 0.0033 |
|
643 |
-
| 2.5126 | 3500 | 0.004 |
|
644 |
-
| 2.5197 | 3510 | 0.0055 |
|
645 |
-
| 2.5269 | 3520 | 0.0057 |
|
646 |
-
| 2.5341 | 3530 | 0.0059 |
|
647 |
-
| 2.5413 | 3540 | 0.0031 |
|
648 |
-
| 2.5485 | 3550 | 0.0039 |
|
649 |
-
| 2.5556 | 3560 | 0.0046 |
|
650 |
-
| 2.5628 | 3570 | 0.0035 |
|
651 |
-
| 2.5700 | 3580 | 0.0037 |
|
652 |
-
| 2.5772 | 3590 | 0.0045 |
|
653 |
-
| 2.5844 | 3600 | 0.006 |
|
654 |
-
| 2.5915 | 3610 | 0.0058 |
|
655 |
-
| 2.5987 | 3620 | 0.0053 |
|
656 |
-
| 2.6059 | 3630 | 0.0045 |
|
657 |
-
| 2.6131 | 3640 | 0.0031 |
|
658 |
-
| 2.6202 | 3650 | 0.0063 |
|
659 |
-
| 2.6274 | 3660 | 0.004 |
|
660 |
-
| 2.6346 | 3670 | 0.0043 |
|
661 |
-
| 2.6418 | 3680 | 0.0055 |
|
662 |
-
| 2.6490 | 3690 | 0.0044 |
|
663 |
-
| 2.6561 | 3700 | 0.0025 |
|
664 |
-
| 2.6633 | 3710 | 0.0047 |
|
665 |
-
| 2.6705 | 3720 | 0.0043 |
|
666 |
-
| 2.6777 | 3730 | 0.0041 |
|
667 |
-
| 2.6849 | 3740 | 0.0064 |
|
668 |
-
| 2.6920 | 3750 | 0.0055 |
|
669 |
-
| 2.6992 | 3760 | 0.0038 |
|
670 |
-
| 2.7064 | 3770 | 0.0059 |
|
671 |
-
| 2.7136 | 3780 | 0.0059 |
|
672 |
-
| 2.7207 | 3790 | 0.0039 |
|
673 |
-
| 2.7279 | 3800 | 0.0051 |
|
674 |
-
| 2.7351 | 3810 | 0.0061 |
|
675 |
-
| 2.7423 | 3820 | 0.0029 |
|
676 |
-
| 2.7495 | 3830 | 0.0043 |
|
677 |
-
| 2.7566 | 3840 | 0.0044 |
|
678 |
-
| 2.7638 | 3850 | 0.0047 |
|
679 |
-
| 2.7710 | 3860 | 0.0041 |
|
680 |
-
| 2.7782 | 3870 | 0.0033 |
|
681 |
-
| 2.7854 | 3880 | 0.0028 |
|
682 |
-
| 2.7925 | 3890 | 0.0049 |
|
683 |
-
| 2.7997 | 3900 | 0.0048 |
|
684 |
-
| 2.8069 | 3910 | 0.0042 |
|
685 |
-
| 2.8141 | 3920 | 0.0047 |
|
686 |
-
| 2.8212 | 3930 | 0.0043 |
|
687 |
-
| 2.8284 | 3940 | 0.0034 |
|
688 |
-
| 2.8356 | 3950 | 0.0034 |
|
689 |
-
| 2.8428 | 3960 | 0.0036 |
|
690 |
-
| 2.8500 | 3970 | 0.0057 |
|
691 |
-
| 2.8571 | 3980 | 0.0067 |
|
692 |
-
| 2.8643 | 3990 | 0.0053 |
|
693 |
-
| 2.8715 | 4000 | 0.0045 |
|
694 |
-
| 2.8787 | 4010 | 0.0044 |
|
695 |
-
| 2.8859 | 4020 | 0.0045 |
|
696 |
-
| 2.8930 | 4030 | 0.0028 |
|
697 |
-
| 2.9002 | 4040 | 0.0032 |
|
698 |
-
| 2.9074 | 4050 | 0.0054 |
|
699 |
-
| 2.9146 | 4060 | 0.005 |
|
700 |
-
| 2.9218 | 4070 | 0.0039 |
|
701 |
-
| 2.9289 | 4080 | 0.003 |
|
702 |
-
| 2.9361 | 4090 | 0.0036 |
|
703 |
-
| 2.9433 | 4100 | 0.003 |
|
704 |
-
| 2.9505 | 4110 | 0.0052 |
|
705 |
-
| 2.9576 | 4120 | 0.0029 |
|
706 |
-
| 2.9648 | 4130 | 0.0038 |
|
707 |
-
| 2.9720 | 4140 | 0.0048 |
|
708 |
-
| 2.9792 | 4150 | 0.0046 |
|
709 |
-
| 2.9864 | 4160 | 0.005 |
|
710 |
-
| 2.9935 | 4170 | 0.0047 |
|
711 |
-
| 3.0007 | 4180 | 0.0048 |
|
712 |
-
| 3.0079 | 4190 | 0.0033 |
|
713 |
-
| 3.0151 | 4200 | 0.0026 |
|
714 |
-
| 3.0223 | 4210 | 0.0031 |
|
715 |
-
| 3.0294 | 4220 | 0.0043 |
|
716 |
-
| 3.0366 | 4230 | 0.0034 |
|
717 |
-
| 3.0438 | 4240 | 0.0038 |
|
718 |
-
| 3.0510 | 4250 | 0.0023 |
|
719 |
-
| 3.0581 | 4260 | 0.0036 |
|
720 |
-
| 3.0653 | 4270 | 0.0045 |
|
721 |
-
| 3.0725 | 4280 | 0.0028 |
|
722 |
-
| 3.0797 | 4290 | 0.0025 |
|
723 |
-
| 3.0869 | 4300 | 0.0036 |
|
724 |
-
| 3.0940 | 4310 | 0.0055 |
|
725 |
-
| 3.1012 | 4320 | 0.0041 |
|
726 |
-
| 3.1084 | 4330 | 0.0027 |
|
727 |
-
| 3.1156 | 4340 | 0.0048 |
|
728 |
-
| 3.1228 | 4350 | 0.0049 |
|
729 |
-
| 3.1299 | 4360 | 0.0028 |
|
730 |
-
| 3.1371 | 4370 | 0.0052 |
|
731 |
-
| 3.1443 | 4380 | 0.0029 |
|
732 |
-
| 3.1515 | 4390 | 0.0039 |
|
733 |
-
| 3.1587 | 4400 | 0.0029 |
|
734 |
-
| 3.1658 | 4410 | 0.0045 |
|
735 |
-
| 3.1730 | 4420 | 0.0031 |
|
736 |
-
| 3.1802 | 4430 | 0.004 |
|
737 |
-
| 3.1874 | 4440 | 0.0042 |
|
738 |
-
| 3.1945 | 4450 | 0.0039 |
|
739 |
-
| 3.2017 | 4460 | 0.0027 |
|
740 |
-
| 3.2089 | 4470 | 0.0031 |
|
741 |
-
| 3.2161 | 4480 | 0.0043 |
|
742 |
-
| 3.2233 | 4490 | 0.0027 |
|
743 |
-
| 3.2304 | 4500 | 0.0035 |
|
744 |
-
| 3.2376 | 4510 | 0.0034 |
|
745 |
-
| 3.2448 | 4520 | 0.0039 |
|
746 |
-
| 3.2520 | 4530 | 0.0026 |
|
747 |
-
| 3.2592 | 4540 | 0.0035 |
|
748 |
-
| 3.2663 | 4550 | 0.0041 |
|
749 |
-
| 3.2735 | 4560 | 0.0021 |
|
750 |
-
| 3.2807 | 4570 | 0.0032 |
|
751 |
-
| 3.2879 | 4580 | 0.0032 |
|
752 |
-
| 3.2950 | 4590 | 0.0026 |
|
753 |
-
| 3.3022 | 4600 | 0.0045 |
|
754 |
-
| 3.3094 | 4610 | 0.0046 |
|
755 |
-
| 3.3166 | 4620 | 0.0014 |
|
756 |
-
| 3.3238 | 4630 | 0.0026 |
|
757 |
-
| 3.3309 | 4640 | 0.0026 |
|
758 |
-
| 3.3381 | 4650 | 0.002 |
|
759 |
-
| 3.3453 | 4660 | 0.0043 |
|
760 |
-
| 3.3525 | 4670 | 0.0051 |
|
761 |
-
| 3.3597 | 4680 | 0.0041 |
|
762 |
-
| 3.3668 | 4690 | 0.0021 |
|
763 |
-
| 3.3740 | 4700 | 0.0059 |
|
764 |
-
| 3.3812 | 4710 | 0.006 |
|
765 |
-
| 3.3884 | 4720 | 0.0049 |
|
766 |
-
| 3.3955 | 4730 | 0.0035 |
|
767 |
-
| 3.4027 | 4740 | 0.004 |
|
768 |
-
| 3.4099 | 4750 | 0.0039 |
|
769 |
-
| 3.4171 | 4760 | 0.0024 |
|
770 |
-
| 3.4243 | 4770 | 0.0026 |
|
771 |
-
| 3.4314 | 4780 | 0.0038 |
|
772 |
-
| 3.4386 | 4790 | 0.0029 |
|
773 |
-
| 3.4458 | 4800 | 0.0045 |
|
774 |
-
| 3.4530 | 4810 | 0.0025 |
|
775 |
-
| 3.4602 | 4820 | 0.0031 |
|
776 |
-
| 3.4673 | 4830 | 0.0044 |
|
777 |
-
| 3.4745 | 4840 | 0.0018 |
|
778 |
-
| 3.4817 | 4850 | 0.0035 |
|
779 |
-
| 3.4889 | 4860 | 0.0031 |
|
780 |
-
| 3.4961 | 4870 | 0.0058 |
|
781 |
-
| 3.5032 | 4880 | 0.0032 |
|
782 |
-
| 3.5104 | 4890 | 0.0028 |
|
783 |
-
| 3.5176 | 4900 | 0.0029 |
|
784 |
-
| 3.5248 | 4910 | 0.0038 |
|
785 |
-
| 3.5319 | 4920 | 0.0026 |
|
786 |
-
| 3.5391 | 4930 | 0.0028 |
|
787 |
-
| 3.5463 | 4940 | 0.0034 |
|
788 |
-
| 3.5535 | 4950 | 0.0044 |
|
789 |
-
| 3.5607 | 4960 | 0.003 |
|
790 |
-
| 3.5678 | 4970 | 0.0028 |
|
791 |
-
| 3.5750 | 4980 | 0.0031 |
|
792 |
-
| 3.5822 | 4990 | 0.003 |
|
793 |
-
| 3.5894 | 5000 | 0.0028 |
|
794 |
-
|
795 |
-
</details>
|
796 |
-
|
797 |
-
### Framework Versions
|
798 |
-
- Python: 3.11.13
|
799 |
-
- Sentence Transformers: 4.1.0
|
800 |
-
- Transformers: 4.52.4
|
801 |
-
- PyTorch: 2.6.0+cu124
|
802 |
-
- Accelerate: 1.8.1
|
803 |
-
- Datasets: 2.14.4
|
804 |
-
- Tokenizers: 0.21.1
|
805 |
-
|
806 |
-
## Citation
|
807 |
-
|
808 |
-
### BibTeX
|
809 |
-
|
810 |
-
#### Sentence Transformers
|
811 |
-
```bibtex
|
812 |
-
@inproceedings{reimers-2019-sentence-bert,
|
813 |
-
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
814 |
-
author = "Reimers, Nils and Gurevych, Iryna",
|
815 |
-
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
816 |
-
month = "11",
|
817 |
-
year = "2019",
|
818 |
-
publisher = "Association for Computational Linguistics",
|
819 |
-
url = "https://arxiv.org/abs/1908.10084",
|
820 |
-
}
|
821 |
-
```
|
822 |
-
|
823 |
-
<!--
|
824 |
-
## Glossary
|
825 |
-
|
826 |
-
*Clearly define terms in order to be accessible across audiences.*
|
827 |
-
-->
|
828 |
-
|
829 |
-
<!--
|
830 |
-
## Model Card Authors
|
831 |
-
|
832 |
-
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
833 |
-
-->
|
834 |
-
|
835 |
-
<!--
|
836 |
-
## Model Card Contact
|
837 |
-
|
838 |
-
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
839 |
-->
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:356381
|
8 |
+
- loss:CategoricalContrastiveLoss
|
9 |
+
widget:
|
10 |
+
- source_sentence: 科目:コンクリート。名称:基礎コンクリート。
|
11 |
+
sentences:
|
12 |
+
- 科目:コンクリート。名称:免震上部コンクリート。
|
13 |
+
- 科目:コンクリート。名称:立上り壁コンクリート。
|
14 |
+
- 科目:コンクリート。名称:地上部コンクリート。
|
15 |
+
- source_sentence: 科目:コンクリート。名称:高流動コンクリート。
|
16 |
+
sentences:
|
17 |
+
- 科目:タイル。名称:踊場床タイル張り。
|
18 |
+
- 科目:コンクリート。名称:普通コンクリート。
|
19 |
+
- 科目:タイル。名称:海街デッキ床タイル。
|
20 |
+
- source_sentence: 科目:コンクリート。名称:免震下部鉄筋コンクリート。
|
21 |
+
sentences:
|
22 |
+
- 科目:コンクリート。名称:捨てコンクリート。
|
23 |
+
- 科目:コンクリート。名称:基礎コンクリート。
|
24 |
+
- 科目:コンクリート。名称:地上部コンクリート。
|
25 |
+
- source_sentence: 科目:タイル。名称:汚垂タイル。
|
26 |
+
sentences:
|
27 |
+
- 科目:コンクリート。名称:構造体強度補正。
|
28 |
+
- 科目:タイル。名称:屋外階段踊場タイル張り。
|
29 |
+
- 科目:タイル。名称:段鼻磁器質タイル。
|
30 |
+
- source_sentence: 科目:タイル。名称:ドライエリア床タイル。
|
31 |
+
sentences:
|
32 |
+
- 科目:タイル。名称:段鼻タイル。
|
33 |
+
- 科目:タイル。名称:屋外階段踊場タイル張り。
|
34 |
+
- 科目:タイル。名称:風除床磁器質タイル。
|
35 |
+
pipeline_tag: sentence-similarity
|
36 |
+
library_name: sentence-transformers
|
37 |
+
---
|
38 |
+
|
39 |
+
# SentenceTransformer
|
40 |
+
|
41 |
+
This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
42 |
+
|
43 |
+
## Model Details
|
44 |
+
|
45 |
+
### Model Description
|
46 |
+
- **Model Type:** Sentence Transformer
|
47 |
+
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
|
48 |
+
- **Maximum Sequence Length:** 512 tokens
|
49 |
+
- **Output Dimensionality:** 768 dimensions
|
50 |
+
- **Similarity Function:** Cosine Similarity
|
51 |
+
<!-- - **Training Dataset:** Unknown -->
|
52 |
+
<!-- - **Language:** Unknown -->
|
53 |
+
<!-- - **License:** Unknown -->
|
54 |
+
|
55 |
+
### Model Sources
|
56 |
+
|
57 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
58 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
59 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
60 |
+
|
61 |
+
### Full Model Architecture
|
62 |
+
|
63 |
+
```
|
64 |
+
SentenceTransformer(
|
65 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
66 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
67 |
+
)
|
68 |
+
```
|
69 |
+
|
70 |
+
## Usage
|
71 |
+
|
72 |
+
### Direct Usage (Sentence Transformers)
|
73 |
+
|
74 |
+
First install the Sentence Transformers library:
|
75 |
+
|
76 |
+
```bash
|
77 |
+
pip install -U sentence-transformers
|
78 |
+
```
|
79 |
+
|
80 |
+
Then you can load this model and run inference.
|
81 |
+
```python
|
82 |
+
from sentence_transformers import SentenceTransformer
|
83 |
+
|
84 |
+
# Download from the 🤗 Hub
|
85 |
+
model = SentenceTransformer("Detomo/cl-nagoya-sup-simcse-ja-nss-v1_0_8_5")
|
86 |
+
# Run inference
|
87 |
+
sentences = [
|
88 |
+
'科目:タイル。名称:ドライエリア床タイル。',
|
89 |
+
'科目:タイル。名称:屋外階段踊場タイル張り。',
|
90 |
+
'科目:タイル。名称:段鼻タイル。',
|
91 |
+
]
|
92 |
+
embeddings = model.encode(sentences)
|
93 |
+
print(embeddings.shape)
|
94 |
+
# [3, 768]
|
95 |
+
|
96 |
+
# Get the similarity scores for the embeddings
|
97 |
+
similarities = model.similarity(embeddings, embeddings)
|
98 |
+
print(similarities.shape)
|
99 |
+
# [3, 3]
|
100 |
+
```
|
101 |
+
|
102 |
+
<!--
|
103 |
+
### Direct Usage (Transformers)
|
104 |
+
|
105 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
106 |
+
|
107 |
+
</details>
|
108 |
+
-->
|
109 |
+
|
110 |
+
<!--
|
111 |
+
### Downstream Usage (Sentence Transformers)
|
112 |
+
|
113 |
+
You can finetune this model on your own dataset.
|
114 |
+
|
115 |
+
<details><summary>Click to expand</summary>
|
116 |
+
|
117 |
+
</details>
|
118 |
+
-->
|
119 |
+
|
120 |
+
<!--
|
121 |
+
### Out-of-Scope Use
|
122 |
+
|
123 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
124 |
+
-->
|
125 |
+
|
126 |
+
<!--
|
127 |
+
## Bias, Risks and Limitations
|
128 |
+
|
129 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
130 |
+
-->
|
131 |
+
|
132 |
+
<!--
|
133 |
+
### Recommendations
|
134 |
+
|
135 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
136 |
+
-->
|
137 |
+
|
138 |
+
## Training Details
|
139 |
+
|
140 |
+
### Training Dataset
|
141 |
+
|
142 |
+
#### Unnamed Dataset
|
143 |
+
|
144 |
+
* Size: 356,381 training samples
|
145 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
|
146 |
+
* Approximate statistics based on the first 1000 samples:
|
147 |
+
| | sentence1 | sentence2 | label |
|
148 |
+
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------|
|
149 |
+
| type | string | string | int |
|
150 |
+
| details | <ul><li>min: 11 tokens</li><li>mean: 13.78 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 14.8 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>0: ~74.10%</li><li>1: ~2.60%</li><li>2: ~23.30%</li></ul> |
|
151 |
+
* Samples:
|
152 |
+
| sentence1 | sentence2 | label |
|
153 |
+
|:-----------------------------------------|:-------------------------------------------------|:---------------|
|
154 |
+
| <code>科目:コンクリート。名称:免震基礎天端グラウト注入。</code> | <code>科目:コンクリート。名称:免震BPL下部充填コンクリート打設手間。</code> | <code>0</code> |
|
155 |
+
| <code>科目:コンクリート。名称:免震基礎天端グラウト注入。</code> | <code>科目:コンクリート。名称:免震下部コンクリート打設手間。</code> | <code>0</code> |
|
156 |
+
| <code>科目:コンクリート。名称:免震基礎天端グラウト注入。</code> | <code>科目:コンクリート。名称:免震下部(外周基礎梁)コンクリート打設手間。</code> | <code>0</code> |
|
157 |
+
* Loss: <code>sentence_transformer_lib.categorical_constrastive_loss.CategoricalContrastiveLoss</code>
|
158 |
+
|
159 |
+
### Training Hyperparameters
|
160 |
+
#### Non-Default Hyperparameters
|
161 |
+
|
162 |
+
- `per_device_train_batch_size`: 256
|
163 |
+
- `per_device_eval_batch_size`: 256
|
164 |
+
- `learning_rate`: 1e-05
|
165 |
+
- `weight_decay`: 0.01
|
166 |
+
- `num_train_epochs`: 4
|
167 |
+
- `warmup_ratio`: 0.2
|
168 |
+
- `fp16`: True
|
169 |
+
|
170 |
+
#### All Hyperparameters
|
171 |
+
<details><summary>Click to expand</summary>
|
172 |
+
|
173 |
+
- `overwrite_output_dir`: False
|
174 |
+
- `do_predict`: False
|
175 |
+
- `eval_strategy`: no
|
176 |
+
- `prediction_loss_only`: True
|
177 |
+
- `per_device_train_batch_size`: 256
|
178 |
+
- `per_device_eval_batch_size`: 256
|
179 |
+
- `per_gpu_train_batch_size`: None
|
180 |
+
- `per_gpu_eval_batch_size`: None
|
181 |
+
- `gradient_accumulation_steps`: 1
|
182 |
+
- `eval_accumulation_steps`: None
|
183 |
+
- `torch_empty_cache_steps`: None
|
184 |
+
- `learning_rate`: 1e-05
|
185 |
+
- `weight_decay`: 0.01
|
186 |
+
- `adam_beta1`: 0.9
|
187 |
+
- `adam_beta2`: 0.999
|
188 |
+
- `adam_epsilon`: 1e-08
|
189 |
+
- `max_grad_norm`: 1.0
|
190 |
+
- `num_train_epochs`: 4
|
191 |
+
- `max_steps`: -1
|
192 |
+
- `lr_scheduler_type`: linear
|
193 |
+
- `lr_scheduler_kwargs`: {}
|
194 |
+
- `warmup_ratio`: 0.2
|
195 |
+
- `warmup_steps`: 0
|
196 |
+
- `log_level`: passive
|
197 |
+
- `log_level_replica`: warning
|
198 |
+
- `log_on_each_node`: True
|
199 |
+
- `logging_nan_inf_filter`: True
|
200 |
+
- `save_safetensors`: True
|
201 |
+
- `save_on_each_node`: False
|
202 |
+
- `save_only_model`: False
|
203 |
+
- `restore_callback_states_from_checkpoint`: False
|
204 |
+
- `no_cuda`: False
|
205 |
+
- `use_cpu`: False
|
206 |
+
- `use_mps_device`: False
|
207 |
+
- `seed`: 42
|
208 |
+
- `data_seed`: None
|
209 |
+
- `jit_mode_eval`: False
|
210 |
+
- `use_ipex`: False
|
211 |
+
- `bf16`: False
|
212 |
+
- `fp16`: True
|
213 |
+
- `fp16_opt_level`: O1
|
214 |
+
- `half_precision_backend`: auto
|
215 |
+
- `bf16_full_eval`: False
|
216 |
+
- `fp16_full_eval`: False
|
217 |
+
- `tf32`: None
|
218 |
+
- `local_rank`: 0
|
219 |
+
- `ddp_backend`: None
|
220 |
+
- `tpu_num_cores`: None
|
221 |
+
- `tpu_metrics_debug`: False
|
222 |
+
- `debug`: []
|
223 |
+
- `dataloader_drop_last`: False
|
224 |
+
- `dataloader_num_workers`: 0
|
225 |
+
- `dataloader_prefetch_factor`: None
|
226 |
+
- `past_index`: -1
|
227 |
+
- `disable_tqdm`: False
|
228 |
+
- `remove_unused_columns`: True
|
229 |
+
- `label_names`: None
|
230 |
+
- `load_best_model_at_end`: False
|
231 |
+
- `ignore_data_skip`: False
|
232 |
+
- `fsdp`: []
|
233 |
+
- `fsdp_min_num_params`: 0
|
234 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
235 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
236 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
237 |
+
- `deepspeed`: None
|
238 |
+
- `label_smoothing_factor`: 0.0
|
239 |
+
- `optim`: adamw_torch
|
240 |
+
- `optim_args`: None
|
241 |
+
- `adafactor`: False
|
242 |
+
- `group_by_length`: False
|
243 |
+
- `length_column_name`: length
|
244 |
+
- `ddp_find_unused_parameters`: None
|
245 |
+
- `ddp_bucket_cap_mb`: None
|
246 |
+
- `ddp_broadcast_buffers`: False
|
247 |
+
- `dataloader_pin_memory`: True
|
248 |
+
- `dataloader_persistent_workers`: False
|
249 |
+
- `skip_memory_metrics`: True
|
250 |
+
- `use_legacy_prediction_loop`: False
|
251 |
+
- `push_to_hub`: False
|
252 |
+
- `resume_from_checkpoint`: None
|
253 |
+
- `hub_model_id`: None
|
254 |
+
- `hub_strategy`: every_save
|
255 |
+
- `hub_private_repo`: None
|
256 |
+
- `hub_always_push`: False
|
257 |
+
- `gradient_checkpointing`: False
|
258 |
+
- `gradient_checkpointing_kwargs`: None
|
259 |
+
- `include_inputs_for_metrics`: False
|
260 |
+
- `include_for_metrics`: []
|
261 |
+
- `eval_do_concat_batches`: True
|
262 |
+
- `fp16_backend`: auto
|
263 |
+
- `push_to_hub_model_id`: None
|
264 |
+
- `push_to_hub_organization`: None
|
265 |
+
- `mp_parameters`:
|
266 |
+
- `auto_find_batch_size`: False
|
267 |
+
- `full_determinism`: False
|
268 |
+
- `torchdynamo`: None
|
269 |
+
- `ray_scope`: last
|
270 |
+
- `ddp_timeout`: 1800
|
271 |
+
- `torch_compile`: False
|
272 |
+
- `torch_compile_backend`: None
|
273 |
+
- `torch_compile_mode`: None
|
274 |
+
- `include_tokens_per_second`: False
|
275 |
+
- `include_num_input_tokens_seen`: False
|
276 |
+
- `neftune_noise_alpha`: None
|
277 |
+
- `optim_target_modules`: None
|
278 |
+
- `batch_eval_metrics`: False
|
279 |
+
- `eval_on_start`: False
|
280 |
+
- `use_liger_kernel`: False
|
281 |
+
- `eval_use_gather_object`: False
|
282 |
+
- `average_tokens_across_devices`: False
|
283 |
+
- `prompts`: None
|
284 |
+
- `batch_sampler`: batch_sampler
|
285 |
+
- `multi_dataset_batch_sampler`: proportional
|
286 |
+
|
287 |
+
</details>
|
288 |
+
|
289 |
+
### Training Logs
|
290 |
+
<details><summary>Click to expand</summary>
|
291 |
+
|
292 |
+
| Epoch | Step | Training Loss |
|
293 |
+
|:------:|:----:|:-------------:|
|
294 |
+
| 0.0072 | 10 | 0.2157 |
|
295 |
+
| 0.0144 | 20 | 0.1965 |
|
296 |
+
| 0.0215 | 30 | 0.164 |
|
297 |
+
| 0.0287 | 40 | 0.1199 |
|
298 |
+
| 0.0359 | 50 | 0.0913 |
|
299 |
+
| 0.0431 | 60 | 0.0687 |
|
300 |
+
| 0.0503 | 70 | 0.0462 |
|
301 |
+
| 0.0574 | 80 | 0.0459 |
|
302 |
+
| 0.0646 | 90 | 0.0424 |
|
303 |
+
| 0.0718 | 100 | 0.0416 |
|
304 |
+
| 0.0790 | 110 | 0.0377 |
|
305 |
+
| 0.0861 | 120 | 0.0472 |
|
306 |
+
| 0.0933 | 130 | 0.0437 |
|
307 |
+
| 0.1005 | 140 | 0.0332 |
|
308 |
+
| 0.1077 | 150 | 0.0411 |
|
309 |
+
| 0.1149 | 160 | 0.0361 |
|
310 |
+
| 0.1220 | 170 | 0.037 |
|
311 |
+
| 0.1292 | 180 | 0.0325 |
|
312 |
+
| 0.1364 | 190 | 0.0386 |
|
313 |
+
| 0.1436 | 200 | 0.0398 |
|
314 |
+
| 0.1508 | 210 | 0.0415 |
|
315 |
+
| 0.1579 | 220 | 0.0327 |
|
316 |
+
| 0.1651 | 230 | 0.0425 |
|
317 |
+
| 0.1723 | 240 | 0.0437 |
|
318 |
+
| 0.1795 | 250 | 0.0365 |
|
319 |
+
| 0.1866 | 260 | 0.028 |
|
320 |
+
| 0.1938 | 270 | 0.0412 |
|
321 |
+
| 0.2010 | 280 | 0.0424 |
|
322 |
+
| 0.2082 | 290 | 0.0382 |
|
323 |
+
| 0.2154 | 300 | 0.0282 |
|
324 |
+
| 0.2225 | 310 | 0.0358 |
|
325 |
+
| 0.2297 | 320 | 0.0311 |
|
326 |
+
| 0.2369 | 330 | 0.0339 |
|
327 |
+
| 0.2441 | 340 | 0.0313 |
|
328 |
+
| 0.2513 | 350 | 0.0333 |
|
329 |
+
| 0.2584 | 360 | 0.0238 |
|
330 |
+
| 0.2656 | 370 | 0.0367 |
|
331 |
+
| 0.2728 | 380 | 0.0295 |
|
332 |
+
| 0.2800 | 390 | 0.0286 |
|
333 |
+
| 0.2872 | 400 | 0.0358 |
|
334 |
+
| 0.2943 | 410 | 0.0288 |
|
335 |
+
| 0.3015 | 420 | 0.032 |
|
336 |
+
| 0.3087 | 430 | 0.0323 |
|
337 |
+
| 0.3159 | 440 | 0.0284 |
|
338 |
+
| 0.3230 | 450 | 0.0297 |
|
339 |
+
| 0.3302 | 460 | 0.0266 |
|
340 |
+
| 0.3374 | 470 | 0.0317 |
|
341 |
+
| 0.3446 | 480 | 0.0298 |
|
342 |
+
| 0.3518 | 490 | 0.0272 |
|
343 |
+
| 0.3589 | 500 | 0.0307 |
|
344 |
+
| 0.3661 | 510 | 0.0337 |
|
345 |
+
| 0.3733 | 520 | 0.0268 |
|
346 |
+
| 0.3805 | 530 | 0.0286 |
|
347 |
+
| 0.3877 | 540 | 0.0283 |
|
348 |
+
| 0.3948 | 550 | 0.0293 |
|
349 |
+
| 0.4020 | 560 | 0.0299 |
|
350 |
+
| 0.4092 | 570 | 0.0231 |
|
351 |
+
| 0.4164 | 580 | 0.0308 |
|
352 |
+
| 0.4235 | 590 | 0.0294 |
|
353 |
+
| 0.4307 | 600 | 0.0309 |
|
354 |
+
| 0.4379 | 610 | 0.0255 |
|
355 |
+
| 0.4451 | 620 | 0.0269 |
|
356 |
+
| 0.4523 | 630 | 0.0226 |
|
357 |
+
| 0.4594 | 640 | 0.028 |
|
358 |
+
| 0.4666 | 650 | 0.027 |
|
359 |
+
| 0.4738 | 660 | 0.0365 |
|
360 |
+
| 0.4810 | 670 | 0.0264 |
|
361 |
+
| 0.4882 | 680 | 0.0212 |
|
362 |
+
| 0.4953 | 690 | 0.0311 |
|
363 |
+
| 0.5025 | 700 | 0.0266 |
|
364 |
+
| 0.5097 | 710 | 0.0203 |
|
365 |
+
| 0.5169 | 720 | 0.0207 |
|
366 |
+
| 0.5240 | 730 | 0.0348 |
|
367 |
+
| 0.5312 | 740 | 0.0227 |
|
368 |
+
| 0.5384 | 750 | 0.0237 |
|
369 |
+
| 0.5456 | 760 | 0.0201 |
|
370 |
+
| 0.5528 | 770 | 0.0257 |
|
371 |
+
| 0.5599 | 780 | 0.0266 |
|
372 |
+
| 0.5671 | 790 | 0.0276 |
|
373 |
+
| 0.5743 | 800 | 0.0271 |
|
374 |
+
| 0.5815 | 810 | 0.0238 |
|
375 |
+
| 0.5887 | 820 | 0.0217 |
|
376 |
+
| 0.5958 | 830 | 0.018 |
|
377 |
+
| 0.6030 | 840 | 0.0223 |
|
378 |
+
| 0.6102 | 850 | 0.0208 |
|
379 |
+
| 0.6174 | 860 | 0.0248 |
|
380 |
+
| 0.6246 | 870 | 0.0264 |
|
381 |
+
| 0.6317 | 880 | 0.0198 |
|
382 |
+
| 0.6389 | 890 | 0.0215 |
|
383 |
+
| 0.6461 | 900 | 0.0193 |
|
384 |
+
| 0.6533 | 910 | 0.0191 |
|
385 |
+
| 0.6604 | 920 | 0.0205 |
|
386 |
+
| 0.6676 | 930 | 0.0219 |
|
387 |
+
| 0.6748 | 940 | 0.0229 |
|
388 |
+
| 0.6820 | 950 | 0.0234 |
|
389 |
+
| 0.6892 | 960 | 0.0225 |
|
390 |
+
| 0.6963 | 970 | 0.0185 |
|
391 |
+
| 0.7035 | 980 | 0.0174 |
|
392 |
+
| 0.7107 | 990 | 0.0169 |
|
393 |
+
| 0.7179 | 1000 | 0.0218 |
|
394 |
+
| 0.7251 | 1010 | 0.0141 |
|
395 |
+
| 0.7322 | 1020 | 0.0221 |
|
396 |
+
| 0.7394 | 1030 | 0.0185 |
|
397 |
+
| 0.7466 | 1040 | 0.0219 |
|
398 |
+
| 0.7538 | 1050 | 0.0183 |
|
399 |
+
| 0.7609 | 1060 | 0.0153 |
|
400 |
+
| 0.7681 | 1070 | 0.0168 |
|
401 |
+
| 0.7753 | 1080 | 0.0177 |
|
402 |
+
| 0.7825 | 1090 | 0.0177 |
|
403 |
+
| 0.7897 | 1100 | 0.0179 |
|
404 |
+
| 0.7968 | 1110 | 0.0181 |
|
405 |
+
| 0.8040 | 1120 | 0.02 |
|
406 |
+
| 0.8112 | 1130 | 0.0186 |
|
407 |
+
| 0.8184 | 1140 | 0.0185 |
|
408 |
+
| 0.8256 | 1150 | 0.0162 |
|
409 |
+
| 0.8327 | 1160 | 0.0156 |
|
410 |
+
| 0.8399 | 1170 | 0.0141 |
|
411 |
+
| 0.8471 | 1180 | 0.0152 |
|
412 |
+
| 0.8543 | 1190 | 0.0146 |
|
413 |
+
| 0.8615 | 1200 | 0.018 |
|
414 |
+
| 0.8686 | 1210 | 0.0194 |
|
415 |
+
| 0.8758 | 1220 | 0.0148 |
|
416 |
+
| 0.8830 | 1230 | 0.0183 |
|
417 |
+
| 0.8902 | 1240 | 0.0124 |
|
418 |
+
| 0.8973 | 1250 | 0.0141 |
|
419 |
+
| 0.9045 | 1260 | 0.0193 |
|
420 |
+
| 0.9117 | 1270 | 0.0169 |
|
421 |
+
| 0.9189 | 1280 | 0.0165 |
|
422 |
+
| 0.9261 | 1290 | 0.0101 |
|
423 |
+
| 0.9332 | 1300 | 0.0195 |
|
424 |
+
| 0.9404 | 1310 | 0.0168 |
|
425 |
+
| 0.9476 | 1320 | 0.0207 |
|
426 |
+
| 0.9548 | 1330 | 0.018 |
|
427 |
+
| 0.9620 | 1340 | 0.0116 |
|
428 |
+
| 0.9691 | 1350 | 0.0175 |
|
429 |
+
| 0.9763 | 1360 | 0.0138 |
|
430 |
+
| 0.9835 | 1370 | 0.0209 |
|
431 |
+
| 0.9907 | 1380 | 0.0145 |
|
432 |
+
| 0.9978 | 1390 | 0.0138 |
|
433 |
+
| 1.0050 | 1400 | 0.0123 |
|
434 |
+
| 1.0122 | 1410 | 0.0145 |
|
435 |
+
| 1.0194 | 1420 | 0.0135 |
|
436 |
+
| 1.0266 | 1430 | 0.0115 |
|
437 |
+
| 1.0337 | 1440 | 0.014 |
|
438 |
+
| 1.0409 | 1450 | 0.0106 |
|
439 |
+
| 1.0481 | 1460 | 0.0102 |
|
440 |
+
| 1.0553 | 1470 | 0.0133 |
|
441 |
+
| 1.0625 | 1480 | 0.008 |
|
442 |
+
| 1.0696 | 1490 | 0.0134 |
|
443 |
+
| 1.0768 | 1500 | 0.0106 |
|
444 |
+
| 1.0840 | 1510 | 0.0151 |
|
445 |
+
| 1.0912 | 1520 | 0.0168 |
|
446 |
+
| 1.0983 | 1530 | 0.0093 |
|
447 |
+
| 1.1055 | 1540 | 0.0132 |
|
448 |
+
| 1.1127 | 1550 | 0.0115 |
|
449 |
+
| 1.1199 | 1560 | 0.0096 |
|
450 |
+
| 1.1271 | 1570 | 0.012 |
|
451 |
+
| 1.1342 | 1580 | 0.0119 |
|
452 |
+
| 1.1414 | 1590 | 0.0108 |
|
453 |
+
| 1.1486 | 1600 | 0.013 |
|
454 |
+
| 1.1558 | 1610 | 0.0109 |
|
455 |
+
| 1.1630 | 1620 | 0.0131 |
|
456 |
+
| 1.1701 | 1630 | 0.0093 |
|
457 |
+
| 1.1773 | 1640 | 0.0126 |
|
458 |
+
| 1.1845 | 1650 | 0.009 |
|
459 |
+
| 1.1917 | 1660 | 0.0106 |
|
460 |
+
| 1.1989 | 1670 | 0.0102 |
|
461 |
+
| 1.2060 | 1680 | 0.0089 |
|
462 |
+
| 1.2132 | 1690 | 0.0096 |
|
463 |
+
| 1.2204 | 1700 | 0.0084 |
|
464 |
+
| 1.2276 | 1710 | 0.0099 |
|
465 |
+
| 1.2347 | 1720 | 0.0074 |
|
466 |
+
| 1.2419 | 1730 | 0.0131 |
|
467 |
+
| 1.2491 | 1740 | 0.0125 |
|
468 |
+
| 1.2563 | 1750 | 0.0102 |
|
469 |
+
| 1.2635 | 1760 | 0.0117 |
|
470 |
+
| 1.2706 | 1770 | 0.0099 |
|
471 |
+
| 1.2778 | 1780 | 0.0078 |
|
472 |
+
| 1.2850 | 1790 | 0.0095 |
|
473 |
+
| 1.2922 | 1800 | 0.0079 |
|
474 |
+
| 1.2994 | 1810 | 0.0069 |
|
475 |
+
| 1.3065 | 1820 | 0.0121 |
|
476 |
+
| 1.3137 | 1830 | 0.0101 |
|
477 |
+
| 1.3209 | 1840 | 0.0151 |
|
478 |
+
| 1.3281 | 1850 | 0.0107 |
|
479 |
+
| 1.3352 | 1860 | 0.0125 |
|
480 |
+
| 1.3424 | 1870 | 0.0111 |
|
481 |
+
| 1.3496 | 1880 | 0.0091 |
|
482 |
+
| 1.3568 | 1890 | 0.0082 |
|
483 |
+
| 1.3640 | 1900 | 0.0092 |
|
484 |
+
| 1.3711 | 1910 | 0.0107 |
|
485 |
+
| 1.3783 | 1920 | 0.0066 |
|
486 |
+
| 1.3855 | 1930 | 0.0141 |
|
487 |
+
| 1.3927 | 1940 | 0.0126 |
|
488 |
+
| 1.3999 | 1950 | 0.009 |
|
489 |
+
| 1.4070 | 1960 | 0.0116 |
|
490 |
+
| 1.4142 | 1970 | 0.0121 |
|
491 |
+
| 1.4214 | 1980 | 0.0098 |
|
492 |
+
| 1.4286 | 1990 | 0.0108 |
|
493 |
+
| 1.4358 | 2000 | 0.0103 |
|
494 |
+
| 1.4429 | 2010 | 0.0118 |
|
495 |
+
| 1.4501 | 2020 | 0.0143 |
|
496 |
+
| 1.4573 | 2030 | 0.0082 |
|
497 |
+
| 1.4645 | 2040 | 0.0077 |
|
498 |
+
| 1.4716 | 2050 | 0.0102 |
|
499 |
+
| 1.4788 | 2060 | 0.0093 |
|
500 |
+
| 1.4860 | 2070 | 0.0084 |
|
501 |
+
| 1.4932 | 2080 | 0.0105 |
|
502 |
+
| 1.5004 | 2090 | 0.0091 |
|
503 |
+
| 1.5075 | 2100 | 0.0094 |
|
504 |
+
| 1.5147 | 2110 | 0.0092 |
|
505 |
+
| 1.5219 | 2120 | 0.0117 |
|
506 |
+
| 1.5291 | 2130 | 0.0085 |
|
507 |
+
| 1.5363 | 2140 | 0.0069 |
|
508 |
+
| 1.5434 | 2150 | 0.0114 |
|
509 |
+
| 1.5506 | 2160 | 0.0077 |
|
510 |
+
| 1.5578 | 2170 | 0.0092 |
|
511 |
+
| 1.5650 | 2180 | 0.0093 |
|
512 |
+
| 1.5721 | 2190 | 0.0076 |
|
513 |
+
| 1.5793 | 2200 | 0.0098 |
|
514 |
+
| 1.5865 | 2210 | 0.01 |
|
515 |
+
| 1.5937 | 2220 | 0.01 |
|
516 |
+
| 1.6009 | 2230 | 0.0092 |
|
517 |
+
| 1.6080 | 2240 | 0.0096 |
|
518 |
+
| 1.6152 | 2250 | 0.0077 |
|
519 |
+
| 1.6224 | 2260 | 0.0147 |
|
520 |
+
| 1.6296 | 2270 | 0.0087 |
|
521 |
+
| 1.6368 | 2280 | 0.0106 |
|
522 |
+
| 1.6439 | 2290 | 0.007 |
|
523 |
+
| 1.6511 | 2300 | 0.0091 |
|
524 |
+
| 1.6583 | 2310 | 0.0083 |
|
525 |
+
| 1.6655 | 2320 | 0.0113 |
|
526 |
+
| 1.6726 | 2330 | 0.0076 |
|
527 |
+
| 1.6798 | 2340 | 0.0096 |
|
528 |
+
| 1.6870 | 2350 | 0.0087 |
|
529 |
+
| 1.6942 | 2360 | 0.0068 |
|
530 |
+
| 1.7014 | 2370 | 0.0064 |
|
531 |
+
| 1.7085 | 2380 | 0.0088 |
|
532 |
+
| 1.7157 | 2390 | 0.0052 |
|
533 |
+
| 1.7229 | 2400 | 0.0088 |
|
534 |
+
| 1.7301 | 2410 | 0.0068 |
|
535 |
+
| 1.7373 | 2420 | 0.0072 |
|
536 |
+
| 1.7444 | 2430 | 0.0076 |
|
537 |
+
| 1.7516 | 2440 | 0.0078 |
|
538 |
+
| 1.7588 | 2450 | 0.0066 |
|
539 |
+
| 1.7660 | 2460 | 0.0086 |
|
540 |
+
| 1.7732 | 2470 | 0.0051 |
|
541 |
+
| 1.7803 | 2480 | 0.0115 |
|
542 |
+
| 1.7875 | 2490 | 0.0059 |
|
543 |
+
| 1.7947 | 2500 | 0.0088 |
|
544 |
+
| 1.8019 | 2510 | 0.0078 |
|
545 |
+
| 1.8090 | 2520 | 0.0057 |
|
546 |
+
| 1.8162 | 2530 | 0.0076 |
|
547 |
+
| 1.8234 | 2540 | 0.0077 |
|
548 |
+
| 1.8306 | 2550 | 0.009 |
|
549 |
+
| 1.8378 | 2560 | 0.0073 |
|
550 |
+
| 1.8449 | 2570 | 0.009 |
|
551 |
+
| 1.8521 | 2580 | 0.0094 |
|
552 |
+
| 1.8593 | 2590 | 0.0068 |
|
553 |
+
| 1.8665 | 2600 | 0.0081 |
|
554 |
+
| 1.8737 | 2610 | 0.004 |
|
555 |
+
| 1.8808 | 2620 | 0.0077 |
|
556 |
+
| 1.8880 | 2630 | 0.0072 |
|
557 |
+
| 1.8952 | 2640 | 0.0061 |
|
558 |
+
| 1.9024 | 2650 | 0.0077 |
|
559 |
+
| 1.9095 | 2660 | 0.0074 |
|
560 |
+
| 1.9167 | 2670 | 0.0077 |
|
561 |
+
| 1.9239 | 2680 | 0.0073 |
|
562 |
+
| 1.9311 | 2690 | 0.0096 |
|
563 |
+
| 1.9383 | 2700 | 0.006 |
|
564 |
+
| 1.9454 | 2710 | 0.0092 |
|
565 |
+
| 1.9526 | 2720 | 0.005 |
|
566 |
+
| 1.9598 | 2730 | 0.0045 |
|
567 |
+
| 1.9670 | 2740 | 0.0071 |
|
568 |
+
| 1.9742 | 2750 | 0.0061 |
|
569 |
+
| 1.9813 | 2760 | 0.0073 |
|
570 |
+
| 1.9885 | 2770 | 0.0073 |
|
571 |
+
| 1.9957 | 2780 | 0.0067 |
|
572 |
+
| 2.0029 | 2790 | 0.0054 |
|
573 |
+
| 2.0101 | 2800 | 0.0044 |
|
574 |
+
| 2.0172 | 2810 | 0.0045 |
|
575 |
+
| 2.0244 | 2820 | 0.005 |
|
576 |
+
| 2.0316 | 2830 | 0.0066 |
|
577 |
+
| 2.0388 | 2840 | 0.0038 |
|
578 |
+
| 2.0459 | 2850 | 0.0051 |
|
579 |
+
| 2.0531 | 2860 | 0.0039 |
|
580 |
+
| 2.0603 | 2870 | 0.0051 |
|
581 |
+
| 2.0675 | 2880 | 0.0056 |
|
582 |
+
| 2.0747 | 2890 | 0.0054 |
|
583 |
+
| 2.0818 | 2900 | 0.0069 |
|
584 |
+
| 2.0890 | 2910 | 0.006 |
|
585 |
+
| 2.0962 | 2920 | 0.0074 |
|
586 |
+
| 2.1034 | 2930 | 0.0067 |
|
587 |
+
| 2.1106 | 2940 | 0.0044 |
|
588 |
+
| 2.1177 | 2950 | 0.0065 |
|
589 |
+
| 2.1249 | 2960 | 0.0066 |
|
590 |
+
| 2.1321 | 2970 | 0.0044 |
|
591 |
+
| 2.1393 | 2980 | 0.0041 |
|
592 |
+
| 2.1464 | 2990 | 0.0066 |
|
593 |
+
| 2.1536 | 3000 | 0.0046 |
|
594 |
+
| 2.1608 | 3010 | 0.0061 |
|
595 |
+
| 2.1680 | 3020 | 0.0039 |
|
596 |
+
| 2.1752 | 3030 | 0.0048 |
|
597 |
+
| 2.1823 | 3040 | 0.0059 |
|
598 |
+
| 2.1895 | 3050 | 0.0067 |
|
599 |
+
| 2.1967 | 3060 | 0.005 |
|
600 |
+
| 2.2039 | 3070 | 0.0028 |
|
601 |
+
| 2.2111 | 3080 | 0.0055 |
|
602 |
+
| 2.2182 | 3090 | 0.0032 |
|
603 |
+
| 2.2254 | 3100 | 0.0074 |
|
604 |
+
| 2.2326 | 3110 | 0.0052 |
|
605 |
+
| 2.2398 | 3120 | 0.0058 |
|
606 |
+
| 2.2469 | 3130 | 0.0067 |
|
607 |
+
| 2.2541 | 3140 | 0.0065 |
|
608 |
+
| 2.2613 | 3150 | 0.0036 |
|
609 |
+
| 2.2685 | 3160 | 0.005 |
|
610 |
+
| 2.2757 | 3170 | 0.0083 |
|
611 |
+
| 2.2828 | 3180 | 0.0038 |
|
612 |
+
| 2.2900 | 3190 | 0.0044 |
|
613 |
+
| 2.2972 | 3200 | 0.0057 |
|
614 |
+
| 2.3044 | 3210 | 0.0042 |
|
615 |
+
| 2.3116 | 3220 | 0.0037 |
|
616 |
+
| 2.3187 | 3230 | 0.0061 |
|
617 |
+
| 2.3259 | 3240 | 0.0038 |
|
618 |
+
| 2.3331 | 3250 | 0.0051 |
|
619 |
+
| 2.3403 | 3260 | 0.0076 |
|
620 |
+
| 2.3475 | 3270 | 0.005 |
|
621 |
+
| 2.3546 | 3280 | 0.0042 |
|
622 |
+
| 2.3618 | 3290 | 0.005 |
|
623 |
+
| 2.3690 | 3300 | 0.0077 |
|
624 |
+
| 2.3762 | 3310 | 0.0067 |
|
625 |
+
| 2.3833 | 3320 | 0.008 |
|
626 |
+
| 2.3905 | 3330 | 0.0077 |
|
627 |
+
| 2.3977 | 3340 | 0.0052 |
|
628 |
+
| 2.4049 | 3350 | 0.0055 |
|
629 |
+
| 2.4121 | 3360 | 0.0059 |
|
630 |
+
| 2.4192 | 3370 | 0.0042 |
|
631 |
+
| 2.4264 | 3380 | 0.0044 |
|
632 |
+
| 2.4336 | 3390 | 0.0055 |
|
633 |
+
| 2.4408 | 3400 | 0.0048 |
|
634 |
+
| 2.4480 | 3410 | 0.0035 |
|
635 |
+
| 2.4551 | 3420 | 0.0068 |
|
636 |
+
| 2.4623 | 3430 | 0.007 |
|
637 |
+
| 2.4695 | 3440 | 0.0059 |
|
638 |
+
| 2.4767 | 3450 | 0.0037 |
|
639 |
+
| 2.4838 | 3460 | 0.0049 |
|
640 |
+
| 2.4910 | 3470 | 0.0042 |
|
641 |
+
| 2.4982 | 3480 | 0.004 |
|
642 |
+
| 2.5054 | 3490 | 0.0033 |
|
643 |
+
| 2.5126 | 3500 | 0.004 |
|
644 |
+
| 2.5197 | 3510 | 0.0055 |
|
645 |
+
| 2.5269 | 3520 | 0.0057 |
|
646 |
+
| 2.5341 | 3530 | 0.0059 |
|
647 |
+
| 2.5413 | 3540 | 0.0031 |
|
648 |
+
| 2.5485 | 3550 | 0.0039 |
|
649 |
+
| 2.5556 | 3560 | 0.0046 |
|
650 |
+
| 2.5628 | 3570 | 0.0035 |
|
651 |
+
| 2.5700 | 3580 | 0.0037 |
|
652 |
+
| 2.5772 | 3590 | 0.0045 |
|
653 |
+
| 2.5844 | 3600 | 0.006 |
|
654 |
+
| 2.5915 | 3610 | 0.0058 |
|
655 |
+
| 2.5987 | 3620 | 0.0053 |
|
656 |
+
| 2.6059 | 3630 | 0.0045 |
|
657 |
+
| 2.6131 | 3640 | 0.0031 |
|
658 |
+
| 2.6202 | 3650 | 0.0063 |
|
659 |
+
| 2.6274 | 3660 | 0.004 |
|
660 |
+
| 2.6346 | 3670 | 0.0043 |
|
661 |
+
| 2.6418 | 3680 | 0.0055 |
|
662 |
+
| 2.6490 | 3690 | 0.0044 |
|
663 |
+
| 2.6561 | 3700 | 0.0025 |
|
664 |
+
| 2.6633 | 3710 | 0.0047 |
|
665 |
+
| 2.6705 | 3720 | 0.0043 |
|
666 |
+
| 2.6777 | 3730 | 0.0041 |
|
667 |
+
| 2.6849 | 3740 | 0.0064 |
|
668 |
+
| 2.6920 | 3750 | 0.0055 |
|
669 |
+
| 2.6992 | 3760 | 0.0038 |
|
670 |
+
| 2.7064 | 3770 | 0.0059 |
|
671 |
+
| 2.7136 | 3780 | 0.0059 |
|
672 |
+
| 2.7207 | 3790 | 0.0039 |
|
673 |
+
| 2.7279 | 3800 | 0.0051 |
|
674 |
+
| 2.7351 | 3810 | 0.0061 |
|
675 |
+
| 2.7423 | 3820 | 0.0029 |
|
676 |
+
| 2.7495 | 3830 | 0.0043 |
|
677 |
+
| 2.7566 | 3840 | 0.0044 |
|
678 |
+
| 2.7638 | 3850 | 0.0047 |
|
679 |
+
| 2.7710 | 3860 | 0.0041 |
|
680 |
+
| 2.7782 | 3870 | 0.0033 |
|
681 |
+
| 2.7854 | 3880 | 0.0028 |
|
682 |
+
| 2.7925 | 3890 | 0.0049 |
|
683 |
+
| 2.7997 | 3900 | 0.0048 |
|
684 |
+
| 2.8069 | 3910 | 0.0042 |
|
685 |
+
| 2.8141 | 3920 | 0.0047 |
|
686 |
+
| 2.8212 | 3930 | 0.0043 |
|
687 |
+
| 2.8284 | 3940 | 0.0034 |
|
688 |
+
| 2.8356 | 3950 | 0.0034 |
|
689 |
+
| 2.8428 | 3960 | 0.0036 |
|
690 |
+
| 2.8500 | 3970 | 0.0057 |
|
691 |
+
| 2.8571 | 3980 | 0.0067 |
|
692 |
+
| 2.8643 | 3990 | 0.0053 |
|
693 |
+
| 2.8715 | 4000 | 0.0045 |
|
694 |
+
| 2.8787 | 4010 | 0.0044 |
|
695 |
+
| 2.8859 | 4020 | 0.0045 |
|
696 |
+
| 2.8930 | 4030 | 0.0028 |
|
697 |
+
| 2.9002 | 4040 | 0.0032 |
|
698 |
+
| 2.9074 | 4050 | 0.0054 |
|
699 |
+
| 2.9146 | 4060 | 0.005 |
|
700 |
+
| 2.9218 | 4070 | 0.0039 |
|
701 |
+
| 2.9289 | 4080 | 0.003 |
|
702 |
+
| 2.9361 | 4090 | 0.0036 |
|
703 |
+
| 2.9433 | 4100 | 0.003 |
|
704 |
+
| 2.9505 | 4110 | 0.0052 |
|
705 |
+
| 2.9576 | 4120 | 0.0029 |
|
706 |
+
| 2.9648 | 4130 | 0.0038 |
|
707 |
+
| 2.9720 | 4140 | 0.0048 |
|
708 |
+
| 2.9792 | 4150 | 0.0046 |
|
709 |
+
| 2.9864 | 4160 | 0.005 |
|
710 |
+
| 2.9935 | 4170 | 0.0047 |
|
711 |
+
| 3.0007 | 4180 | 0.0048 |
|
712 |
+
| 3.0079 | 4190 | 0.0033 |
|
713 |
+
| 3.0151 | 4200 | 0.0026 |
|
714 |
+
| 3.0223 | 4210 | 0.0031 |
|
715 |
+
| 3.0294 | 4220 | 0.0043 |
|
716 |
+
| 3.0366 | 4230 | 0.0034 |
|
717 |
+
| 3.0438 | 4240 | 0.0038 |
|
718 |
+
| 3.0510 | 4250 | 0.0023 |
|
719 |
+
| 3.0581 | 4260 | 0.0036 |
|
720 |
+
| 3.0653 | 4270 | 0.0045 |
|
721 |
+
| 3.0725 | 4280 | 0.0028 |
|
722 |
+
| 3.0797 | 4290 | 0.0025 |
|
723 |
+
| 3.0869 | 4300 | 0.0036 |
|
724 |
+
| 3.0940 | 4310 | 0.0055 |
|
725 |
+
| 3.1012 | 4320 | 0.0041 |
|
726 |
+
| 3.1084 | 4330 | 0.0027 |
|
727 |
+
| 3.1156 | 4340 | 0.0048 |
|
728 |
+
| 3.1228 | 4350 | 0.0049 |
|
729 |
+
| 3.1299 | 4360 | 0.0028 |
|
730 |
+
| 3.1371 | 4370 | 0.0052 |
|
731 |
+
| 3.1443 | 4380 | 0.0029 |
|
732 |
+
| 3.1515 | 4390 | 0.0039 |
|
733 |
+
| 3.1587 | 4400 | 0.0029 |
|
734 |
+
| 3.1658 | 4410 | 0.0045 |
|
735 |
+
| 3.1730 | 4420 | 0.0031 |
|
736 |
+
| 3.1802 | 4430 | 0.004 |
|
737 |
+
| 3.1874 | 4440 | 0.0042 |
|
738 |
+
| 3.1945 | 4450 | 0.0039 |
|
739 |
+
| 3.2017 | 4460 | 0.0027 |
|
740 |
+
| 3.2089 | 4470 | 0.0031 |
|
741 |
+
| 3.2161 | 4480 | 0.0043 |
|
742 |
+
| 3.2233 | 4490 | 0.0027 |
|
743 |
+
| 3.2304 | 4500 | 0.0035 |
|
744 |
+
| 3.2376 | 4510 | 0.0034 |
|
745 |
+
| 3.2448 | 4520 | 0.0039 |
|
746 |
+
| 3.2520 | 4530 | 0.0026 |
|
747 |
+
| 3.2592 | 4540 | 0.0035 |
|
748 |
+
| 3.2663 | 4550 | 0.0041 |
|
749 |
+
| 3.2735 | 4560 | 0.0021 |
|
750 |
+
| 3.2807 | 4570 | 0.0032 |
|
751 |
+
| 3.2879 | 4580 | 0.0032 |
|
752 |
+
| 3.2950 | 4590 | 0.0026 |
|
753 |
+
| 3.3022 | 4600 | 0.0045 |
|
754 |
+
| 3.3094 | 4610 | 0.0046 |
|
755 |
+
| 3.3166 | 4620 | 0.0014 |
|
756 |
+
| 3.3238 | 4630 | 0.0026 |
|
757 |
+
| 3.3309 | 4640 | 0.0026 |
|
758 |
+
| 3.3381 | 4650 | 0.002 |
|
759 |
+
| 3.3453 | 4660 | 0.0043 |
|
760 |
+
| 3.3525 | 4670 | 0.0051 |
|
761 |
+
| 3.3597 | 4680 | 0.0041 |
|
762 |
+
| 3.3668 | 4690 | 0.0021 |
|
763 |
+
| 3.3740 | 4700 | 0.0059 |
|
764 |
+
| 3.3812 | 4710 | 0.006 |
|
765 |
+
| 3.3884 | 4720 | 0.0049 |
|
766 |
+
| 3.3955 | 4730 | 0.0035 |
|
767 |
+
| 3.4027 | 4740 | 0.004 |
|
768 |
+
| 3.4099 | 4750 | 0.0039 |
|
769 |
+
| 3.4171 | 4760 | 0.0024 |
|
770 |
+
| 3.4243 | 4770 | 0.0026 |
|
771 |
+
| 3.4314 | 4780 | 0.0038 |
|
772 |
+
| 3.4386 | 4790 | 0.0029 |
|
773 |
+
| 3.4458 | 4800 | 0.0045 |
|
774 |
+
| 3.4530 | 4810 | 0.0025 |
|
775 |
+
| 3.4602 | 4820 | 0.0031 |
|
776 |
+
| 3.4673 | 4830 | 0.0044 |
|
777 |
+
| 3.4745 | 4840 | 0.0018 |
|
778 |
+
| 3.4817 | 4850 | 0.0035 |
|
779 |
+
| 3.4889 | 4860 | 0.0031 |
|
780 |
+
| 3.4961 | 4870 | 0.0058 |
|
781 |
+
| 3.5032 | 4880 | 0.0032 |
|
782 |
+
| 3.5104 | 4890 | 0.0028 |
|
783 |
+
| 3.5176 | 4900 | 0.0029 |
|
784 |
+
| 3.5248 | 4910 | 0.0038 |
|
785 |
+
| 3.5319 | 4920 | 0.0026 |
|
786 |
+
| 3.5391 | 4930 | 0.0028 |
|
787 |
+
| 3.5463 | 4940 | 0.0034 |
|
788 |
+
| 3.5535 | 4950 | 0.0044 |
|
789 |
+
| 3.5607 | 4960 | 0.003 |
|
790 |
+
| 3.5678 | 4970 | 0.0028 |
|
791 |
+
| 3.5750 | 4980 | 0.0031 |
|
792 |
+
| 3.5822 | 4990 | 0.003 |
|
793 |
+
| 3.5894 | 5000 | 0.0028 |
|
794 |
+
|
795 |
+
</details>
|
796 |
+
|
797 |
+
### Framework Versions
|
798 |
+
- Python: 3.11.13
|
799 |
+
- Sentence Transformers: 4.1.0
|
800 |
+
- Transformers: 4.52.4
|
801 |
+
- PyTorch: 2.6.0+cu124
|
802 |
+
- Accelerate: 1.8.1
|
803 |
+
- Datasets: 2.14.4
|
804 |
+
- Tokenizers: 0.21.1
|
805 |
+
|
806 |
+
## Citation
|
807 |
+
|
808 |
+
### BibTeX
|
809 |
+
|
810 |
+
#### Sentence Transformers
|
811 |
+
```bibtex
|
812 |
+
@inproceedings{reimers-2019-sentence-bert,
|
813 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
814 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
815 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
816 |
+
month = "11",
|
817 |
+
year = "2019",
|
818 |
+
publisher = "Association for Computational Linguistics",
|
819 |
+
url = "https://arxiv.org/abs/1908.10084",
|
820 |
+
}
|
821 |
+
```
|
822 |
+
|
823 |
+
<!--
|
824 |
+
## Glossary
|
825 |
+
|
826 |
+
*Clearly define terms in order to be accessible across audiences.*
|
827 |
+
-->
|
828 |
+
|
829 |
+
<!--
|
830 |
+
## Model Card Authors
|
831 |
+
|
832 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
833 |
+
-->
|
834 |
+
|
835 |
+
<!--
|
836 |
+
## Model Card Contact
|
837 |
+
|
838 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
839 |
-->
|
config.json
CHANGED
@@ -1,24 +1,24 @@
|
|
1 |
-
{
|
2 |
-
"architectures": [
|
3 |
-
"BertModel"
|
4 |
-
],
|
5 |
-
"attention_probs_dropout_prob": 0.1,
|
6 |
-
"classifier_dropout": null,
|
7 |
-
"hidden_act": "gelu",
|
8 |
-
"hidden_dropout_prob": 0.1,
|
9 |
-
"hidden_size": 768,
|
10 |
-
"initializer_range": 0.02,
|
11 |
-
"intermediate_size": 3072,
|
12 |
-
"layer_norm_eps": 1e-12,
|
13 |
-
"max_position_embeddings": 512,
|
14 |
-
"model_type": "bert",
|
15 |
-
"num_attention_heads": 12,
|
16 |
-
"num_hidden_layers": 12,
|
17 |
-
"pad_token_id": 0,
|
18 |
-
"position_embedding_type": "absolute",
|
19 |
-
"torch_dtype": "float32",
|
20 |
-
"transformers_version": "4.52.4",
|
21 |
-
"type_vocab_size": 2,
|
22 |
-
"use_cache": true,
|
23 |
-
"vocab_size": 32768
|
24 |
-
}
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertModel"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"classifier_dropout": null,
|
7 |
+
"hidden_act": "gelu",
|
8 |
+
"hidden_dropout_prob": 0.1,
|
9 |
+
"hidden_size": 768,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 3072,
|
12 |
+
"layer_norm_eps": 1e-12,
|
13 |
+
"max_position_embeddings": 512,
|
14 |
+
"model_type": "bert",
|
15 |
+
"num_attention_heads": 12,
|
16 |
+
"num_hidden_layers": 12,
|
17 |
+
"pad_token_id": 0,
|
18 |
+
"position_embedding_type": "absolute",
|
19 |
+
"torch_dtype": "float32",
|
20 |
+
"transformers_version": "4.52.4",
|
21 |
+
"type_vocab_size": 2,
|
22 |
+
"use_cache": true,
|
23 |
+
"vocab_size": 32768
|
24 |
+
}
|
config_sentence_transformers.json
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
-
{
|
2 |
-
"__version__": {
|
3 |
-
"sentence_transformers": "4.1.0",
|
4 |
-
"transformers": "4.52.4",
|
5 |
-
"pytorch": "2.
|
6 |
-
},
|
7 |
-
"prompts": {},
|
8 |
-
"default_prompt_name": null,
|
9 |
-
"similarity_fn_name": "cosine"
|
10 |
}
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "4.1.0",
|
4 |
+
"transformers": "4.52.4",
|
5 |
+
"pytorch": "2.5.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
}
|
modules.json
CHANGED
@@ -1,14 +1,14 @@
|
|
1 |
-
[
|
2 |
-
{
|
3 |
-
"idx": 0,
|
4 |
-
"name": "0",
|
5 |
-
"path": "",
|
6 |
-
"type": "sentence_transformers.models.Transformer"
|
7 |
-
},
|
8 |
-
{
|
9 |
-
"idx": 1,
|
10 |
-
"name": "1",
|
11 |
-
"path": "1_Pooling",
|
12 |
-
"type": "sentence_transformers.models.Pooling"
|
13 |
-
}
|
14 |
]
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
]
|
sentence_bert_config.json
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
{
|
2 |
-
"max_seq_length": 512,
|
3 |
-
"do_lower_case": false
|
4 |
}
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
}
|
special_tokens_map.json
CHANGED
@@ -1,37 +1,37 @@
|
|
1 |
-
{
|
2 |
-
"cls_token": {
|
3 |
-
"content": "[CLS]",
|
4 |
-
"lstrip": false,
|
5 |
-
"normalized": false,
|
6 |
-
"rstrip": false,
|
7 |
-
"single_word": false
|
8 |
-
},
|
9 |
-
"mask_token": {
|
10 |
-
"content": "[MASK]",
|
11 |
-
"lstrip": false,
|
12 |
-
"normalized": false,
|
13 |
-
"rstrip": false,
|
14 |
-
"single_word": false
|
15 |
-
},
|
16 |
-
"pad_token": {
|
17 |
-
"content": "[PAD]",
|
18 |
-
"lstrip": false,
|
19 |
-
"normalized": false,
|
20 |
-
"rstrip": false,
|
21 |
-
"single_word": false
|
22 |
-
},
|
23 |
-
"sep_token": {
|
24 |
-
"content": "[SEP]",
|
25 |
-
"lstrip": false,
|
26 |
-
"normalized": false,
|
27 |
-
"rstrip": false,
|
28 |
-
"single_word": false
|
29 |
-
},
|
30 |
-
"unk_token": {
|
31 |
-
"content": "[UNK]",
|
32 |
-
"lstrip": false,
|
33 |
-
"normalized": false,
|
34 |
-
"rstrip": false,
|
35 |
-
"single_word": false
|
36 |
-
}
|
37 |
-
}
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer_config.json
CHANGED
@@ -1,64 +1,64 @@
|
|
1 |
-
{
|
2 |
-
"added_tokens_decoder": {
|
3 |
-
"0": {
|
4 |
-
"content": "[PAD]",
|
5 |
-
"lstrip": false,
|
6 |
-
"normalized": false,
|
7 |
-
"rstrip": false,
|
8 |
-
"single_word": false,
|
9 |
-
"special": true
|
10 |
-
},
|
11 |
-
"1": {
|
12 |
-
"content": "[UNK]",
|
13 |
-
"lstrip": false,
|
14 |
-
"normalized": false,
|
15 |
-
"rstrip": false,
|
16 |
-
"single_word": false,
|
17 |
-
"special": true
|
18 |
-
},
|
19 |
-
"2": {
|
20 |
-
"content": "[CLS]",
|
21 |
-
"lstrip": false,
|
22 |
-
"normalized": false,
|
23 |
-
"rstrip": false,
|
24 |
-
"single_word": false,
|
25 |
-
"special": true
|
26 |
-
},
|
27 |
-
"3": {
|
28 |
-
"content": "[SEP]",
|
29 |
-
"lstrip": false,
|
30 |
-
"normalized": false,
|
31 |
-
"rstrip": false,
|
32 |
-
"single_word": false,
|
33 |
-
"special": true
|
34 |
-
},
|
35 |
-
"4": {
|
36 |
-
"content": "[MASK]",
|
37 |
-
"lstrip": false,
|
38 |
-
"normalized": false,
|
39 |
-
"rstrip": false,
|
40 |
-
"single_word": false,
|
41 |
-
"special": true
|
42 |
-
}
|
43 |
-
},
|
44 |
-
"clean_up_tokenization_spaces": true,
|
45 |
-
"cls_token": "[CLS]",
|
46 |
-
"do_lower_case": false,
|
47 |
-
"do_subword_tokenize": true,
|
48 |
-
"do_word_tokenize": true,
|
49 |
-
"extra_special_tokens": {},
|
50 |
-
"jumanpp_kwargs": null,
|
51 |
-
"mask_token": "[MASK]",
|
52 |
-
"mecab_kwargs": {
|
53 |
-
"mecab_dic": "unidic_lite"
|
54 |
-
},
|
55 |
-
"model_max_length": 512,
|
56 |
-
"never_split": null,
|
57 |
-
"pad_token": "[PAD]",
|
58 |
-
"sep_token": "[SEP]",
|
59 |
-
"subword_tokenizer_type": "wordpiece",
|
60 |
-
"sudachi_kwargs": null,
|
61 |
-
"tokenizer_class": "BertJapaneseTokenizer",
|
62 |
-
"unk_token": "[UNK]",
|
63 |
-
"word_tokenizer_type": "mecab"
|
64 |
-
}
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": false,
|
47 |
+
"do_subword_tokenize": true,
|
48 |
+
"do_word_tokenize": true,
|
49 |
+
"extra_special_tokens": {},
|
50 |
+
"jumanpp_kwargs": null,
|
51 |
+
"mask_token": "[MASK]",
|
52 |
+
"mecab_kwargs": {
|
53 |
+
"mecab_dic": "unidic_lite"
|
54 |
+
},
|
55 |
+
"model_max_length": 512,
|
56 |
+
"never_split": null,
|
57 |
+
"pad_token": "[PAD]",
|
58 |
+
"sep_token": "[SEP]",
|
59 |
+
"subword_tokenizer_type": "wordpiece",
|
60 |
+
"sudachi_kwargs": null,
|
61 |
+
"tokenizer_class": "BertJapaneseTokenizer",
|
62 |
+
"unk_token": "[UNK]",
|
63 |
+
"word_tokenizer_type": "mecab"
|
64 |
+
}
|
vocab.txt
CHANGED
The diff for this file is too large to render.
See raw diff
|
|