metadata
			tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:366717
  - loss:CategoricalContrastiveLoss
widget:
  - source_sentence: 科目:コンクリート。名称:免震BPL下部充填コンクリート打設手間。
    sentences:
      - 科目:コンクリート。名称:#F/#FLコンクリート打設手間。
      - 科目:コンクリート。名称:擁壁部コンクリート打設手間。
      - 科目:タイル。名称:EXP_J上床磁器質タイルA。
  - source_sentence: 科目:タイル。名称:段床タイル。
    sentences:
      - 科目:コンクリート。名称:擁壁部コンクリート打設手間。
      - 科目:タイル。名称:地流し床タイル。
      - 科目:タイル。名称:#階WWC洗面台壁モザイクタイル-#。
  - source_sentence: 科目:タイル。名称:屋外階段踊場タイル。
    sentences:
      - 科目:タイル。名称:手洗い水周りタイル(A)。
      - 科目:タイル。名称:タイル出隅コーナー。
      - 科目:タイル。名称:#階WWC洗面台壁モザイクタイル-#。
  - source_sentence: 科目:タイル。名称:デッキ床タイル。
    sentences:
      - 科目:タイル。名称:昇降口床タイル張り。
      - 科目:タイル。名称:床磁器質タイルA。
      - 科目:タイル。名称:ピロティ柱壁タイルA。
  - source_sentence: 科目:タイル。名称:床タイル。
    sentences:
      - 科目:タイル。名称:屋外階段踊場タイル張り。
      - 科目:タイル。名称:段鼻タイル。
      - 科目:コンクリート。名称:地上部コンクリート。
pipeline_tag: sentence-similarity
library_name: sentence-transformers
SentenceTransformer
This is a sentence-transformers model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Detomo/cl-nagoya-sup-simcse-ja-nss-v1_0_9_1")
# Run inference
sentences = [
    '科目:タイル。名称:床タイル。',
    '科目:タイル。名称:屋外階段踊場タイル張り。',
    '科目:タイル。名称:段鼻タイル。',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 366,717 training samples
- Columns: sentence1,sentence2, andlabel
- Approximate statistics based on the first 1000 samples:sentence1 sentence2 label type string string int details - min: 11 tokens
- mean: 13.8 tokens
- max: 19 tokens
 - min: 11 tokens
- mean: 14.78 tokens
- max: 23 tokens
 - 0: ~66.70%
- 1: ~3.50%
- 2: ~29.80%
 
- Samples:sentence1 sentence2 label 科目:コンクリート。名称:免震基礎天端グラウト注入。科目:コンクリート。名称:免震下部(外周基礎梁)コンクリート打設手間。0科目:コンクリート。名称:免震基礎天端グラウト注入。科目:コンクリート。名称:免震下部コンクリート打設手間。0科目:コンクリート。名称:免震基礎天端グラウト注入。科目:コンクリート。名称:免震BPL下部充填コンクリート打設手間。0
- Loss: sentence_transformer_lib.categorical_constrastive_loss.CategoricalContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
- per_device_train_batch_size: 256
- per_device_eval_batch_size: 256
- learning_rate: 1e-05
- weight_decay: 0.01
- warmup_ratio: 0.2
- fp16: True
All Hyperparameters
Click to expand
- overwrite_output_dir: False
- do_predict: False
- eval_strategy: no
- prediction_loss_only: True
- per_device_train_batch_size: 256
- per_device_eval_batch_size: 256
- per_gpu_train_batch_size: None
- per_gpu_eval_batch_size: None
- gradient_accumulation_steps: 1
- eval_accumulation_steps: None
- torch_empty_cache_steps: None
- learning_rate: 1e-05
- weight_decay: 0.01
- adam_beta1: 0.9
- adam_beta2: 0.999
- adam_epsilon: 1e-08
- max_grad_norm: 1.0
- num_train_epochs: 3
- max_steps: -1
- lr_scheduler_type: linear
- lr_scheduler_kwargs: {}
- warmup_ratio: 0.2
- warmup_steps: 0
- log_level: passive
- log_level_replica: warning
- log_on_each_node: True
- logging_nan_inf_filter: True
- save_safetensors: True
- save_on_each_node: False
- save_only_model: False
- restore_callback_states_from_checkpoint: False
- no_cuda: False
- use_cpu: False
- use_mps_device: False
- seed: 42
- data_seed: None
- jit_mode_eval: False
- use_ipex: False
- bf16: False
- fp16: True
- fp16_opt_level: O1
- half_precision_backend: auto
- bf16_full_eval: False
- fp16_full_eval: False
- tf32: None
- local_rank: 0
- ddp_backend: None
- tpu_num_cores: None
- tpu_metrics_debug: False
- debug: []
- dataloader_drop_last: False
- dataloader_num_workers: 0
- dataloader_prefetch_factor: None
- past_index: -1
- disable_tqdm: False
- remove_unused_columns: True
- label_names: None
- load_best_model_at_end: False
- ignore_data_skip: False
- fsdp: []
- fsdp_min_num_params: 0
- fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- fsdp_transformer_layer_cls_to_wrap: None
- accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- deepspeed: None
- label_smoothing_factor: 0.0
- optim: adamw_torch
- optim_args: None
- adafactor: False
- group_by_length: False
- length_column_name: length
- ddp_find_unused_parameters: None
- ddp_bucket_cap_mb: None
- ddp_broadcast_buffers: False
- dataloader_pin_memory: True
- dataloader_persistent_workers: False
- skip_memory_metrics: True
- use_legacy_prediction_loop: False
- push_to_hub: False
- resume_from_checkpoint: None
- hub_model_id: None
- hub_strategy: every_save
- hub_private_repo: None
- hub_always_push: False
- hub_revision: None
- gradient_checkpointing: False
- gradient_checkpointing_kwargs: None
- include_inputs_for_metrics: False
- include_for_metrics: []
- eval_do_concat_batches: True
- fp16_backend: auto
- push_to_hub_model_id: None
- push_to_hub_organization: None
- mp_parameters:
- auto_find_batch_size: False
- full_determinism: False
- torchdynamo: None
- ray_scope: last
- ddp_timeout: 1800
- torch_compile: False
- torch_compile_backend: None
- torch_compile_mode: None
- include_tokens_per_second: False
- include_num_input_tokens_seen: False
- neftune_noise_alpha: None
- optim_target_modules: None
- batch_eval_metrics: False
- eval_on_start: False
- use_liger_kernel: False
- liger_kernel_config: None
- eval_use_gather_object: False
- average_tokens_across_devices: False
- prompts: None
- batch_sampler: batch_sampler
- multi_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | 
|---|---|---|
| 0.0349 | 50 | 0.0328 | 
| 0.0698 | 100 | 0.036 | 
| 0.1047 | 150 | 0.0357 | 
| 0.1396 | 200 | 0.0324 | 
| 0.1745 | 250 | 0.0335 | 
| 0.2094 | 300 | 0.0354 | 
| 0.2442 | 350 | 0.0322 | 
| 0.2791 | 400 | 0.0321 | 
| 0.3140 | 450 | 0.0273 | 
| 0.3489 | 500 | 0.025 | 
| 0.3838 | 550 | 0.0245 | 
| 0.4187 | 600 | 0.0242 | 
| 0.4536 | 650 | 0.0224 | 
| 0.4885 | 700 | 0.0239 | 
| 0.5234 | 750 | 0.0228 | 
| 0.5583 | 800 | 0.0243 | 
| 0.5932 | 850 | 0.0208 | 
| 0.6281 | 900 | 0.022 | 
| 0.6629 | 950 | 0.0196 | 
| 0.6978 | 1000 | 0.0224 | 
| 0.7327 | 1050 | 0.0177 | 
| 0.7676 | 1100 | 0.0189 | 
| 0.8025 | 1150 | 0.0158 | 
| 0.8374 | 1200 | 0.017 | 
| 0.8723 | 1250 | 0.0146 | 
| 0.9072 | 1300 | 0.0144 | 
| 0.9421 | 1350 | 0.0158 | 
| 0.9770 | 1400 | 0.0144 | 
| 1.0119 | 1450 | 0.0146 | 
| 1.0468 | 1500 | 0.0115 | 
| 1.0816 | 1550 | 0.0105 | 
| 1.1165 | 1600 | 0.0108 | 
| 1.1514 | 1650 | 0.0113 | 
| 1.1863 | 1700 | 0.0109 | 
| 1.2212 | 1750 | 0.0084 | 
| 1.2561 | 1800 | 0.0099 | 
| 1.2910 | 1850 | 0.0104 | 
| 1.3259 | 1900 | 0.0112 | 
| 1.3608 | 1950 | 0.0084 | 
| 1.3957 | 2000 | 0.0083 | 
| 1.4306 | 2050 | 0.0094 | 
| 1.4655 | 2100 | 0.0093 | 
| 1.5003 | 2150 | 0.007 | 
| 1.5352 | 2200 | 0.0082 | 
| 1.5701 | 2250 | 0.0098 | 
| 1.6050 | 2300 | 0.0082 | 
| 1.6399 | 2350 | 0.0074 | 
| 1.6748 | 2400 | 0.0081 | 
| 1.7097 | 2450 | 0.0076 | 
| 1.7446 | 2500 | 0.0076 | 
| 1.7795 | 2550 | 0.0093 | 
| 1.8144 | 2600 | 0.0079 | 
| 1.8493 | 2650 | 0.0075 | 
| 1.8842 | 2700 | 0.0075 | 
| 1.9191 | 2750 | 0.0068 | 
| 1.9539 | 2800 | 0.0065 | 
| 1.9888 | 2850 | 0.0071 | 
| 2.0237 | 2900 | 0.006 | 
| 2.0586 | 2950 | 0.0053 | 
| 2.0935 | 3000 | 0.0048 | 
| 2.1284 | 3050 | 0.0056 | 
| 2.1633 | 3100 | 0.0063 | 
| 2.1982 | 3150 | 0.005 | 
| 2.2331 | 3200 | 0.0052 | 
| 2.2680 | 3250 | 0.0047 | 
| 2.3029 | 3300 | 0.0052 | 
| 2.3378 | 3350 | 0.0063 | 
| 2.3726 | 3400 | 0.0052 | 
| 2.4075 | 3450 | 0.0048 | 
| 2.4424 | 3500 | 0.0052 | 
| 2.4773 | 3550 | 0.0057 | 
| 2.5122 | 3600 | 0.0047 | 
| 2.5471 | 3650 | 0.0048 | 
| 2.5820 | 3700 | 0.0058 | 
| 2.6169 | 3750 | 0.0055 | 
| 2.6518 | 3800 | 0.005 | 
| 2.6867 | 3850 | 0.0057 | 
| 2.7216 | 3900 | 0.0044 | 
| 2.7565 | 3950 | 0.0052 | 
| 2.7913 | 4000 | 0.0049 | 
| 2.8262 | 4050 | 0.0046 | 
| 2.8611 | 4100 | 0.0053 | 
| 2.8960 | 4150 | 0.0051 | 
| 2.9309 | 4200 | 0.0048 | 
| 2.9658 | 4250 | 0.0043 | 
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.53.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.1
- Datasets: 2.14.4
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

