|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:197418 |
|
- loss:CategoricalContrastiveLoss |
|
widget: |
|
- source_sentence: 科目:コンクリート。名称:普通コンクリート。 |
|
sentences: |
|
- 科目:コンクリート。名称:多目的ホール浮き床コンクリート。 |
|
- 科目:コンクリート。名称:シンダーコンクリート。摘要:FC18N/mm2 スランプ15。備考:代価表 0038。 |
|
- 科目:コンクリート。名称:均しコンクリート。 |
|
- source_sentence: 科目:コンクリート。名称:コンクリート打設。 |
|
sentences: |
|
- 科目:コンクリート。名称:普通コンクリート。摘要:JIS A5308 FC30+ΔS(構造体補正)S18 粗骨材20高性能AE減水剤。備考:刊-コン 3018K免震層上部コン。 |
|
- 科目:コンクリート。名称:多目的ホール間柱基礎コンクリート。摘要:FC21N/mm2 スランプ18。備考:代価表 0041。 |
|
- 科目:コンクリート。名称:コンクリート打設手間。 |
|
- source_sentence: 科目:コンクリート。名称:土間コンクリート。 |
|
sentences: |
|
- 科目:コンクリート。名称:擁壁部コンクリート打設手間。 |
|
- 科目:タイル。名称:床タイルK。 |
|
- 科目:コンクリート。名称:土間コンクリート。摘要:FC18N/mm2 スランプ15。備考:代価表 0039。 |
|
- source_sentence: 科目:コンクリート。名称:基礎部コンクリート打設手間。 |
|
sentences: |
|
- 科目:コンクリート。名称:普通コンクリート。摘要:JIS A5308 FC33+ΔS(構造体補正)S15粗骨材20高性能AE減水剤・防水剤入。備考:刊-コン |
|
3315KB基礎部コン。 |
|
- 科目:コンクリート。名称:機械基礎コンクリート。摘要:Fc24 S18粗骨材20。備考:代価表 0123。 |
|
- 科目:コンクリート。名称:土間コンクリート。 |
|
- source_sentence: 科目:コンクリート。名称:基礎部マスコンクリート。 |
|
sentences: |
|
- 科目:コンクリート。名称:オイルタンク基礎コンクリート。摘要:FC24 S18粗骨材20 高性能AE減水剤。備考:代価表 0108。 |
|
- 科目:タイル。名称:階段段鼻ノンスリップ役物タイル。 |
|
- 科目:コンクリート。名称:普通コンクリート。摘要:FC=24 S15粗骨材基礎部。備考:代価表 0054。 |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
--- |
|
|
|
# SentenceTransformer |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("Detomo/cl-nagoya-sup-simcse-ja-nss-v_1_0_7_5") |
|
# Run inference |
|
sentences = [ |
|
'科目:コンクリート。名称:基礎部マスコンクリート。', |
|
'科目:コンクリート。名称:オイルタンク基礎コンクリート。摘要:FC24 S18粗骨材20 高性能AE減水剤。備考:代価表 0108。', |
|
'科目:コンクリート。名称:普通コンクリート。摘要:FC=24 S15粗骨材基礎部。備考:代価表 0054。', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
* Size: 197,418 training samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | label | |
|
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------| |
|
| type | string | string | int | |
|
| details | <ul><li>min: 11 tokens</li><li>mean: 13.71 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 31.5 tokens</li><li>max: 72 tokens</li></ul> | <ul><li>0: ~61.50%</li><li>1: ~5.60%</li><li>2: ~32.90%</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | label | |
|
|:-----------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------|:---------------| |
|
| <code>科目:コンクリート。名称:コンクリートポンプ圧送。</code> | <code>科目:コンクリート。名称:ポンプ圧送。</code> | <code>1</code> | |
|
| <code>科目:コンクリート。名称:コンクリートポンプ圧送。</code> | <code>科目:コンクリート。名称:コンクリートポンプ圧送。摘要:100m3/回以上基本料金別途加算。備考:B0-434226 No.1 市場捨てコン。</code> | <code>0</code> | |
|
| <code>科目:コンクリート。名称:コンクリートポンプ圧送。</code> | <code>科目:コンクリート。名称:コンクリート打設手間。摘要:躯体 ポンプ打設100m3/回以上 S15~S18標準階高 圧送費、基本料別途。備考:B0-434215 No.1 市場地上部コン(1F)。</code> | <code>0</code> | |
|
* Loss: <code>sentence_transformer_lib.categorical_constrastive_loss.CategoricalContrastiveLoss</code> |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `per_device_train_batch_size`: 256 |
|
- `per_device_eval_batch_size`: 256 |
|
- `learning_rate`: 1e-05 |
|
- `weight_decay`: 0.01 |
|
- `num_train_epochs`: 20 |
|
- `warmup_ratio`: 0.2 |
|
- `fp16`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: no |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 256 |
|
- `per_device_eval_batch_size`: 256 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 1e-05 |
|
- `weight_decay`: 0.01 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 20 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.2 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `tp_size`: 0 |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | |
|
|:------:|:----:|:-------------:| |
|
| 0.0648 | 50 | 0.2993 | |
|
| 0.1295 | 100 | 0.1925 | |
|
| 0.1943 | 150 | 0.1197 | |
|
| 0.2591 | 200 | 0.1054 | |
|
| 0.3238 | 250 | 0.0849 | |
|
| 0.3886 | 300 | 0.0854 | |
|
| 0.4534 | 350 | 0.0716 | |
|
| 0.5181 | 400 | 0.0659 | |
|
| 0.5829 | 450 | 0.0641 | |
|
| 0.6477 | 500 | 0.0641 | |
|
| 0.7124 | 550 | 0.0619 | |
|
| 0.7772 | 600 | 0.0589 | |
|
| 0.8420 | 650 | 0.0564 | |
|
| 0.9067 | 700 | 0.0506 | |
|
| 0.9715 | 750 | 0.0513 | |
|
| 1.0363 | 800 | 0.0473 | |
|
| 1.1010 | 850 | 0.0451 | |
|
| 1.1658 | 900 | 0.044 | |
|
| 1.2306 | 950 | 0.0418 | |
|
| 1.2953 | 1000 | 0.042 | |
|
| 1.3601 | 1050 | 0.0337 | |
|
| 1.4249 | 1100 | 0.0337 | |
|
| 1.4896 | 1150 | 0.0354 | |
|
| 1.5544 | 1200 | 0.0353 | |
|
| 1.6192 | 1250 | 0.0353 | |
|
| 1.6839 | 1300 | 0.0323 | |
|
| 1.7487 | 1350 | 0.0297 | |
|
| 1.8135 | 1400 | 0.0331 | |
|
| 1.8782 | 1450 | 0.0303 | |
|
| 1.9430 | 1500 | 0.0286 | |
|
| 2.0078 | 1550 | 0.0265 | |
|
| 2.0725 | 1600 | 0.0257 | |
|
| 2.1373 | 1650 | 0.0195 | |
|
| 2.2021 | 1700 | 0.0225 | |
|
| 2.2668 | 1750 | 0.0206 | |
|
| 2.3316 | 1800 | 0.0231 | |
|
| 2.3964 | 1850 | 0.0225 | |
|
| 2.4611 | 1900 | 0.0203 | |
|
| 2.5259 | 1950 | 0.0207 | |
|
| 2.5907 | 2000 | 0.02 | |
|
| 2.6554 | 2050 | 0.0181 | |
|
| 2.7202 | 2100 | 0.0202 | |
|
| 2.7850 | 2150 | 0.0187 | |
|
| 2.8497 | 2200 | 0.0192 | |
|
| 2.9145 | 2250 | 0.0168 | |
|
| 2.9793 | 2300 | 0.0162 | |
|
| 3.0440 | 2350 | 0.0159 | |
|
| 3.1088 | 2400 | 0.0145 | |
|
| 3.1736 | 2450 | 0.0134 | |
|
| 3.2383 | 2500 | 0.0138 | |
|
| 3.3031 | 2550 | 0.0125 | |
|
| 3.3679 | 2600 | 0.0132 | |
|
| 3.4326 | 2650 | 0.0122 | |
|
| 3.4974 | 2700 | 0.0133 | |
|
| 3.5622 | 2750 | 0.0127 | |
|
| 3.6269 | 2800 | 0.0125 | |
|
| 3.6917 | 2850 | 0.0107 | |
|
| 3.7565 | 2900 | 0.0114 | |
|
| 3.8212 | 2950 | 0.0104 | |
|
| 3.8860 | 3000 | 0.0107 | |
|
| 3.9508 | 3050 | 0.0112 | |
|
| 4.0155 | 3100 | 0.0084 | |
|
| 4.0803 | 3150 | 0.0086 | |
|
| 4.1451 | 3200 | 0.0077 | |
|
| 4.2098 | 3250 | 0.0098 | |
|
| 4.2746 | 3300 | 0.0068 | |
|
| 4.3394 | 3350 | 0.0082 | |
|
| 4.4041 | 3400 | 0.0064 | |
|
| 4.4689 | 3450 | 0.0083 | |
|
| 4.5337 | 3500 | 0.0065 | |
|
| 4.5984 | 3550 | 0.0067 | |
|
| 4.6632 | 3600 | 0.0074 | |
|
| 4.7280 | 3650 | 0.0078 | |
|
| 4.7927 | 3700 | 0.0072 | |
|
| 4.8575 | 3750 | 0.0077 | |
|
| 4.9223 | 3800 | 0.007 | |
|
| 4.9870 | 3850 | 0.0067 | |
|
| 5.0518 | 3900 | 0.0057 | |
|
| 5.1166 | 3950 | 0.0054 | |
|
| 5.1813 | 4000 | 0.0046 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.11.12 |
|
- Sentence Transformers: 4.1.0 |
|
- Transformers: 4.51.3 |
|
- PyTorch: 2.6.0+cu124 |
|
- Accelerate: 1.6.0 |
|
- Datasets: 2.14.4 |
|
- Tokenizers: 0.21.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |