MiniLM - CoSQA
Collection
Fine-tuned models of all-miniLM model on the CoSQA dataset
•
6 items
•
Updated
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Devy1/MiniLM-cosqa-256")
# Run inference
sentences = [
'bottom 5 rows in python',
'def table_top_abs(self):\n """Returns the absolute position of table top"""\n table_height = np.array([0, 0, self.table_full_size[2]])\n return string_to_array(self.floor.get("pos")) + table_height',
'def refresh(self, document):\n\t\t""" Load a new copy of a document from the database. does not\n\t\t\treplace the old one """\n\t\ttry:\n\t\t\told_cache_size = self.cache_size\n\t\t\tself.cache_size = 0\n\t\t\tobj = self.query(type(document)).filter_by(mongo_id=document.mongo_id).one()\n\t\tfinally:\n\t\t\tself.cache_size = old_cache_size\n\t\tself.cache_write(obj)\n\t\treturn obj',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, 0.4934, -0.0548],
# [ 0.4934, 1.0000, -0.0408],
# [-0.0548, -0.0408, 1.0000]])
anchor and positive| anchor | positive | |
|---|---|---|
| type | string | string |
| details |
|
|
| anchor | positive |
|---|---|
1d array in char datatype in python |
def _convert_to_array(array_like, dtype): |
python condition non none |
def _not(condition=None, **kwargs): |
accessing a column from a matrix in python |
def get_column(self, X, column): |
MultipleNegativesRankingLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
per_device_train_batch_size: 256fp16: Trueoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 256per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}| Epoch | Step | Training Loss |
|---|---|---|
| 0.0278 | 1 | 0.8774 |
| 0.0556 | 2 | 0.6553 |
| 0.0833 | 3 | 0.7565 |
| 0.1111 | 4 | 0.7703 |
| 0.1389 | 5 | 0.5969 |
| 0.1667 | 6 | 0.5905 |
| 0.1944 | 7 | 0.76 |
| 0.2222 | 8 | 0.6663 |
| 0.25 | 9 | 0.625 |
| 0.2778 | 10 | 0.5882 |
| 0.3056 | 11 | 0.623 |
| 0.3333 | 12 | 0.5631 |
| 0.3611 | 13 | 0.524 |
| 0.3889 | 14 | 0.7467 |
| 0.4167 | 15 | 0.6272 |
| 0.4444 | 16 | 0.5395 |
| 0.4722 | 17 | 0.6429 |
| 0.5 | 18 | 0.6462 |
| 0.5278 | 19 | 0.6576 |
| 0.5556 | 20 | 0.6333 |
| 0.5833 | 21 | 0.6013 |
| 0.6111 | 22 | 0.5671 |
| 0.6389 | 23 | 0.6835 |
| 0.6667 | 24 | 0.5734 |
| 0.6944 | 25 | 0.5969 |
| 0.7222 | 26 | 0.5446 |
| 0.75 | 27 | 0.6675 |
| 0.7778 | 28 | 0.5319 |
| 0.8056 | 29 | 0.5374 |
| 0.8333 | 30 | 0.5085 |
| 0.8611 | 31 | 0.6267 |
| 0.8889 | 32 | 0.4322 |
| 0.9167 | 33 | 0.5383 |
| 0.9444 | 34 | 0.5712 |
| 0.9722 | 35 | 0.5485 |
| 1.0 | 36 | 0.214 |
| 1.0278 | 37 | 0.515 |
| 1.0556 | 38 | 0.4593 |
| 1.0833 | 39 | 0.4891 |
| 1.1111 | 40 | 0.3927 |
| 1.1389 | 41 | 0.4909 |
| 1.1667 | 42 | 0.4875 |
| 1.1944 | 43 | 0.4611 |
| 1.2222 | 44 | 0.409 |
| 1.25 | 45 | 0.4307 |
| 1.2778 | 46 | 0.4946 |
| 1.3056 | 47 | 0.5795 |
| 1.3333 | 48 | 0.4643 |
| 1.3611 | 49 | 0.4998 |
| 1.3889 | 50 | 0.4235 |
| 1.4167 | 51 | 0.5118 |
| 1.4444 | 52 | 0.4707 |
| 1.4722 | 53 | 0.4705 |
| 1.5 | 54 | 0.4539 |
| 1.5278 | 55 | 0.5652 |
| 1.5556 | 56 | 0.404 |
| 1.5833 | 57 | 0.5273 |
| 1.6111 | 58 | 0.5888 |
| 1.6389 | 59 | 0.4139 |
| 1.6667 | 60 | 0.4815 |
| 1.6944 | 61 | 0.4656 |
| 1.7222 | 62 | 0.3471 |
| 1.75 | 63 | 0.4345 |
| 1.7778 | 64 | 0.4375 |
| 1.8056 | 65 | 0.3994 |
| 1.8333 | 66 | 0.4184 |
| 1.8611 | 67 | 0.4474 |
| 1.8889 | 68 | 0.3888 |
| 1.9167 | 69 | 0.3873 |
| 1.9444 | 70 | 0.5267 |
| 1.9722 | 71 | 0.3954 |
| 2.0 | 72 | 0.0789 |
| 2.0278 | 73 | 0.429 |
| 2.0556 | 74 | 0.4103 |
| 2.0833 | 75 | 0.3696 |
| 2.1111 | 76 | 0.426 |
| 2.1389 | 77 | 0.3726 |
| 2.1667 | 78 | 0.4097 |
| 2.1944 | 79 | 0.4385 |
| 2.2222 | 80 | 0.3634 |
| 2.25 | 81 | 0.346 |
| 2.2778 | 82 | 0.3483 |
| 2.3056 | 83 | 0.4737 |
| 2.3333 | 84 | 0.4918 |
| 2.3611 | 85 | 0.3644 |
| 2.3889 | 86 | 0.4132 |
| 2.4167 | 87 | 0.422 |
| 2.4444 | 88 | 0.5443 |
| 2.4722 | 89 | 0.4509 |
| 2.5 | 90 | 0.3926 |
| 2.5278 | 91 | 0.3734 |
| 2.5556 | 92 | 0.3753 |
| 2.5833 | 93 | 0.3722 |
| 2.6111 | 94 | 0.4094 |
| 2.6389 | 95 | 0.4425 |
| 2.6667 | 96 | 0.374 |
| 2.6944 | 97 | 0.4313 |
| 2.7222 | 98 | 0.3245 |
| 2.75 | 99 | 0.3582 |
| 2.7778 | 100 | 0.3581 |
| 2.8056 | 101 | 0.3798 |
| 2.8333 | 102 | 0.3791 |
| 2.8611 | 103 | 0.3892 |
| 2.8889 | 104 | 0.3989 |
| 2.9167 | 105 | 0.3393 |
| 2.9444 | 106 | 0.457 |
| 2.9722 | 107 | 0.3486 |
| 3.0 | 108 | 0.1888 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
sentence-transformers/all-MiniLM-L6-v2