MiniLM - CoSQA
					Collection
				
Fine-tuned models of all-miniLM model on the CoSQA dataset
					• 
				6 items
				• 
				Updated
					
				
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Devy1/MiniLM-cosqa-32")
# Run inference
sentences = [
    'bottom 5 rows in python',
    'def table_top_abs(self):\n        """Returns the absolute position of table top"""\n        table_height = np.array([0, 0, self.table_full_size[2]])\n        return string_to_array(self.floor.get("pos")) + table_height',
    'def refresh(self, document):\n\t\t""" Load a new copy of a document from the database.  does not\n\t\t\treplace the old one """\n\t\ttry:\n\t\t\told_cache_size = self.cache_size\n\t\t\tself.cache_size = 0\n\t\t\tobj = self.query(type(document)).filter_by(mongo_id=document.mongo_id).one()\n\t\tfinally:\n\t\t\tself.cache_size = old_cache_size\n\t\tself.cache_write(obj)\n\t\treturn obj',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000,  0.4728, -0.0350],
#         [ 0.4728,  1.0000, -0.0494],
#         [-0.0350, -0.0494,  1.0000]])
anchor and positive| anchor | positive | |
|---|---|---|
| type | string | string | 
| details | 
 | 
 | 
| anchor | positive | 
|---|---|
| 1d array in char datatype in python | def _convert_to_array(array_like, dtype): | 
| python condition non none | def _not(condition=None, **kwargs): | 
| accessing a column from a matrix in python | def get_column(self, X, column): | 
MultipleNegativesRankingLoss with these parameters:{
    "scale": 20.0,
    "similarity_fct": "cos_sim",
    "gather_across_devices": false
}
per_device_train_batch_size: 32fp16: Trueoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}| Epoch | Step | Training Loss | 
|---|---|---|
| 0.0035 | 1 | 0.5705 | 
| 0.0071 | 2 | 0.1217 | 
| 0.0106 | 3 | 0.1985 | 
| 0.0142 | 4 | 0.2742 | 
| 0.0177 | 5 | 0.0782 | 
| 0.0213 | 6 | 0.1748 | 
| 0.0248 | 7 | 0.1914 | 
| 0.0284 | 8 | 0.0911 | 
| 0.0319 | 9 | 0.0368 | 
| 0.0355 | 10 | 0.219 | 
| 0.0390 | 11 | 0.1571 | 
| 0.0426 | 12 | 0.081 | 
| 0.0461 | 13 | 0.1152 | 
| 0.0496 | 14 | 0.0556 | 
| 0.0532 | 15 | 0.1375 | 
| 0.0567 | 16 | 0.1844 | 
| 0.0603 | 17 | 0.3164 | 
| 0.0638 | 18 | 0.2312 | 
| 0.0674 | 19 | 0.1767 | 
| 0.0709 | 20 | 0.0975 | 
| 0.0745 | 21 | 0.2848 | 
| 0.0780 | 22 | 0.0972 | 
| 0.0816 | 23 | 0.3153 | 
| 0.0851 | 24 | 0.1087 | 
| 0.0887 | 25 | 0.1673 | 
| 0.0922 | 26 | 0.2074 | 
| 0.0957 | 27 | 0.2197 | 
| 0.0993 | 28 | 0.2571 | 
| 0.1028 | 29 | 0.1873 | 
| 0.1064 | 30 | 0.0657 | 
| 0.1099 | 31 | 0.0675 | 
| 0.1135 | 32 | 0.0749 | 
| 0.1170 | 33 | 0.0948 | 
| 0.1206 | 34 | 0.0849 | 
| 0.1241 | 35 | 0.0882 | 
| 0.1277 | 36 | 0.0436 | 
| 0.1312 | 37 | 0.1173 | 
| 0.1348 | 38 | 0.1512 | 
| 0.1383 | 39 | 0.1062 | 
| 0.1418 | 40 | 0.0384 | 
| 0.1454 | 41 | 0.148 | 
| 0.1489 | 42 | 0.0432 | 
| 0.1525 | 43 | 0.1027 | 
| 0.1560 | 44 | 0.4193 | 
| 0.1596 | 45 | 0.1003 | 
| 0.1631 | 46 | 0.113 | 
| 0.1667 | 47 | 0.0846 | 
| 0.1702 | 48 | 0.0899 | 
| 0.1738 | 49 | 0.0952 | 
| 0.1773 | 50 | 0.0553 | 
| 0.1809 | 51 | 0.11 | 
| 0.1844 | 52 | 0.1955 | 
| 0.1879 | 53 | 0.1103 | 
| 0.1915 | 54 | 0.0738 | 
| 0.1950 | 55 | 0.1217 | 
| 0.1986 | 56 | 0.274 | 
| 0.2021 | 57 | 0.1471 | 
| 0.2057 | 58 | 0.0727 | 
| 0.2092 | 59 | 0.0438 | 
| 0.2128 | 60 | 0.1521 | 
| 0.2163 | 61 | 0.1359 | 
| 0.2199 | 62 | 0.1217 | 
| 0.2234 | 63 | 0.2226 | 
| 0.2270 | 64 | 0.2676 | 
| 0.2305 | 65 | 0.1649 | 
| 0.2340 | 66 | 0.1675 | 
| 0.2376 | 67 | 0.1278 | 
| 0.2411 | 68 | 0.1627 | 
| 0.2447 | 69 | 0.108 | 
| 0.2482 | 70 | 0.1327 | 
| 0.2518 | 71 | 0.1762 | 
| 0.2553 | 72 | 0.41 | 
| 0.2589 | 73 | 0.1551 | 
| 0.2624 | 74 | 0.1893 | 
| 0.2660 | 75 | 0.0847 | 
| 0.2695 | 76 | 0.0949 | 
| 0.2730 | 77 | 0.2214 | 
| 0.2766 | 78 | 0.0439 | 
| 0.2801 | 79 | 0.1355 | 
| 0.2837 | 80 | 0.1951 | 
| 0.2872 | 81 | 0.068 | 
| 0.2908 | 82 | 0.1032 | 
| 0.2943 | 83 | 0.1131 | 
| 0.2979 | 84 | 0.2245 | 
| 0.3014 | 85 | 0.2323 | 
| 0.3050 | 86 | 0.1512 | 
| 0.3085 | 87 | 0.1686 | 
| 0.3121 | 88 | 0.0797 | 
| 0.3156 | 89 | 0.2182 | 
| 0.3191 | 90 | 0.2181 | 
| 0.3227 | 91 | 0.0944 | 
| 0.3262 | 92 | 0.083 | 
| 0.3298 | 93 | 0.1554 | 
| 0.3333 | 94 | 0.0999 | 
| 0.3369 | 95 | 0.1948 | 
| 0.3404 | 96 | 0.1446 | 
| 0.3440 | 97 | 0.2856 | 
| 0.3475 | 98 | 0.0786 | 
| 0.3511 | 99 | 0.1112 | 
| 0.3546 | 100 | 0.0571 | 
| 0.3582 | 101 | 0.2553 | 
| 0.3617 | 102 | 0.0546 | 
| 0.3652 | 103 | 0.1948 | 
| 0.3688 | 104 | 0.0945 | 
| 0.3723 | 105 | 0.0973 | 
| 0.3759 | 106 | 0.0478 | 
| 0.3794 | 107 | 0.3652 | 
| 0.3830 | 108 | 0.2676 | 
| 0.3865 | 109 | 0.1216 | 
| 0.3901 | 110 | 0.0701 | 
| 0.3936 | 111 | 0.0918 | 
| 0.3972 | 112 | 0.1813 | 
| 0.4007 | 113 | 0.1243 | 
| 0.4043 | 114 | 0.2819 | 
| 0.4078 | 115 | 0.0103 | 
| 0.4113 | 116 | 0.2099 | 
| 0.4149 | 117 | 0.0879 | 
| 0.4184 | 118 | 0.1614 | 
| 0.4220 | 119 | 0.0869 | 
| 0.4255 | 120 | 0.0942 | 
| 0.4291 | 121 | 0.0592 | 
| 0.4326 | 122 | 0.1387 | 
| 0.4362 | 123 | 0.0805 | 
| 0.4397 | 124 | 0.1844 | 
| 0.4433 | 125 | 0.0292 | 
| 0.4468 | 126 | 0.3999 | 
| 0.4504 | 127 | 0.1031 | 
| 0.4539 | 128 | 0.3445 | 
| 0.4574 | 129 | 0.2309 | 
| 0.4610 | 130 | 0.1887 | 
| 0.4645 | 131 | 0.2472 | 
| 0.4681 | 132 | 0.1128 | 
| 0.4716 | 133 | 0.1276 | 
| 0.4752 | 134 | 0.1141 | 
| 0.4787 | 135 | 0.1117 | 
| 0.4823 | 136 | 0.1593 | 
| 0.4858 | 137 | 0.0363 | 
| 0.4894 | 138 | 0.1564 | 
| 0.4929 | 139 | 0.21 | 
| 0.4965 | 140 | 0.2024 | 
| 0.5 | 141 | 0.1785 | 
| 0.5035 | 142 | 0.1456 | 
| 0.5071 | 143 | 0.0986 | 
| 0.5106 | 144 | 0.1947 | 
| 0.5142 | 145 | 0.1733 | 
| 0.5177 | 146 | 0.1656 | 
| 0.5213 | 147 | 0.0951 | 
| 0.5248 | 148 | 0.1216 | 
| 0.5284 | 149 | 0.0875 | 
| 0.5319 | 150 | 0.1284 | 
| 0.5355 | 151 | 0.1066 | 
| 0.5390 | 152 | 0.0692 | 
| 0.5426 | 153 | 0.2287 | 
| 0.5461 | 154 | 0.233 | 
| 0.5496 | 155 | 0.1066 | 
| 0.5532 | 156 | 0.0862 | 
| 0.5567 | 157 | 0.0877 | 
| 0.5603 | 158 | 0.3095 | 
| 0.5638 | 159 | 0.1237 | 
| 0.5674 | 160 | 0.0682 | 
| 0.5709 | 161 | 0.0741 | 
| 0.5745 | 162 | 0.2003 | 
| 0.5780 | 163 | 0.1392 | 
| 0.5816 | 164 | 0.0493 | 
| 0.5851 | 165 | 0.3129 | 
| 0.5887 | 166 | 0.1186 | 
| 0.5922 | 167 | 0.0369 | 
| 0.5957 | 168 | 0.1224 | 
| 0.5993 | 169 | 0.2212 | 
| 0.6028 | 170 | 0.0809 | 
| 0.6064 | 171 | 0.116 | 
| 0.6099 | 172 | 0.2251 | 
| 0.6135 | 173 | 0.0195 | 
| 0.6170 | 174 | 0.0476 | 
| 0.6206 | 175 | 0.0818 | 
| 0.6241 | 176 | 0.0313 | 
| 0.6277 | 177 | 0.188 | 
| 0.6312 | 178 | 0.2736 | 
| 0.6348 | 179 | 0.1444 | 
| 0.6383 | 180 | 0.0924 | 
| 0.6418 | 181 | 0.0895 | 
| 0.6454 | 182 | 0.2116 | 
| 0.6489 | 183 | 0.3288 | 
| 0.6525 | 184 | 0.1659 | 
| 0.6560 | 185 | 0.1367 | 
| 0.6596 | 186 | 0.1834 | 
| 0.6631 | 187 | 0.0822 | 
| 0.6667 | 188 | 0.1384 | 
| 0.6702 | 189 | 0.1602 | 
| 0.6738 | 190 | 0.1325 | 
| 0.6773 | 191 | 0.1033 | 
| 0.6809 | 192 | 0.1102 | 
| 0.6844 | 193 | 0.0786 | 
| 0.6879 | 194 | 0.1158 | 
| 0.6915 | 195 | 0.0639 | 
| 0.6950 | 196 | 0.18 | 
| 0.6986 | 197 | 0.0512 | 
| 0.7021 | 198 | 0.1271 | 
| 0.7057 | 199 | 0.0839 | 
| 0.7092 | 200 | 0.0838 | 
| 0.7128 | 201 | 0.0691 | 
| 0.7163 | 202 | 0.1457 | 
| 0.7199 | 203 | 0.1363 | 
| 0.7234 | 204 | 0.1059 | 
| 0.7270 | 205 | 0.1051 | 
| 0.7305 | 206 | 0.0541 | 
| 0.7340 | 207 | 0.1409 | 
| 0.7376 | 208 | 0.0911 | 
| 0.7411 | 209 | 0.2823 | 
| 0.7447 | 210 | 0.156 | 
| 0.7482 | 211 | 0.394 | 
| 0.7518 | 212 | 0.1946 | 
| 0.7553 | 213 | 0.0282 | 
| 0.7589 | 214 | 0.1497 | 
| 0.7624 | 215 | 0.1643 | 
| 0.7660 | 216 | 0.0236 | 
| 0.7695 | 217 | 0.0654 | 
| 0.7730 | 218 | 0.0537 | 
| 0.7766 | 219 | 0.1068 | 
| 0.7801 | 220 | 0.051 | 
| 0.7837 | 221 | 0.072 | 
| 0.7872 | 222 | 0.0413 | 
| 0.7908 | 223 | 0.0918 | 
| 0.7943 | 224 | 0.1308 | 
| 0.7979 | 225 | 0.0694 | 
| 0.8014 | 226 | 0.0852 | 
| 0.8050 | 227 | 0.0321 | 
| 0.8085 | 228 | 0.1497 | 
| 0.8121 | 229 | 0.0959 | 
| 0.8156 | 230 | 0.226 | 
| 0.8191 | 231 | 0.1129 | 
| 0.8227 | 232 | 0.0831 | 
| 0.8262 | 233 | 0.2181 | 
| 0.8298 | 234 | 0.1054 | 
| 0.8333 | 235 | 0.1812 | 
| 0.8369 | 236 | 0.0455 | 
| 0.8404 | 237 | 0.1413 | 
| 0.8440 | 238 | 0.0801 | 
| 0.8475 | 239 | 0.0301 | 
| 0.8511 | 240 | 0.0846 | 
| 0.8546 | 241 | 0.1862 | 
| 0.8582 | 242 | 0.1015 | 
| 0.8617 | 243 | 0.0459 | 
| 0.8652 | 244 | 0.0774 | 
| 0.8688 | 245 | 0.1444 | 
| 0.8723 | 246 | 0.2849 | 
| 0.8759 | 247 | 0.3935 | 
| 0.8794 | 248 | 0.2126 | 
| 0.8830 | 249 | 0.0845 | 
| 0.8865 | 250 | 0.1429 | 
| 0.8901 | 251 | 0.0107 | 
| 0.8936 | 252 | 0.0599 | 
| 0.8972 | 253 | 0.1192 | 
| 0.9007 | 254 | 0.1369 | 
| 0.9043 | 255 | 0.1246 | 
| 0.9078 | 256 | 0.0163 | 
| 0.9113 | 257 | 0.1844 | 
| 0.9149 | 258 | 0.1017 | 
| 0.9184 | 259 | 0.0415 | 
| 0.9220 | 260 | 0.1658 | 
| 0.9255 | 261 | 0.0755 | 
| 0.9291 | 262 | 0.086 | 
| 0.9326 | 263 | 0.081 | 
| 0.9362 | 264 | 0.2776 | 
| 0.9397 | 265 | 0.1284 | 
| 0.9433 | 266 | 0.1591 | 
| 0.9468 | 267 | 0.1397 | 
| 0.9504 | 268 | 0.0334 | 
| 0.9539 | 269 | 0.0449 | 
| 0.9574 | 270 | 0.1382 | 
| 0.9610 | 271 | 0.1736 | 
| 0.9645 | 272 | 0.236 | 
| 0.9681 | 273 | 0.225 | 
| 0.9716 | 274 | 0.2444 | 
| 0.9752 | 275 | 0.0497 | 
| 0.9787 | 276 | 0.1212 | 
| 0.9823 | 277 | 0.1405 | 
| 0.9858 | 278 | 0.1116 | 
| 0.9894 | 279 | 0.0369 | 
| 0.9929 | 280 | 0.0321 | 
| 0.9965 | 281 | 0.1481 | 
| 1.0 | 282 | 0.1046 | 
| 1.0035 | 283 | 0.0673 | 
| 1.0071 | 284 | 0.078 | 
| 1.0106 | 285 | 0.0723 | 
| 1.0142 | 286 | 0.1328 | 
| 1.0177 | 287 | 0.1399 | 
| 1.0213 | 288 | 0.186 | 
| 1.0248 | 289 | 0.0747 | 
| 1.0284 | 290 | 0.0291 | 
| 1.0319 | 291 | 0.0427 | 
| 1.0355 | 292 | 0.0288 | 
| 1.0390 | 293 | 0.1552 | 
| 1.0426 | 294 | 0.0123 | 
| 1.0461 | 295 | 0.0617 | 
| 1.0496 | 296 | 0.0646 | 
| 1.0532 | 297 | 0.2001 | 
| 1.0567 | 298 | 0.068 | 
| 1.0603 | 299 | 0.0108 | 
| 1.0638 | 300 | 0.0776 | 
| 1.0674 | 301 | 0.1037 | 
| 1.0709 | 302 | 0.0087 | 
| 1.0745 | 303 | 0.1564 | 
| 1.0780 | 304 | 0.0665 | 
| 1.0816 | 305 | 0.0246 | 
| 1.0851 | 306 | 0.061 | 
| 1.0887 | 307 | 0.038 | 
| 1.0922 | 308 | 0.1016 | 
| 1.0957 | 309 | 0.0434 | 
| 1.0993 | 310 | 0.1178 | 
| 1.1028 | 311 | 0.1235 | 
| 1.1064 | 312 | 0.0164 | 
| 1.1099 | 313 | 0.0838 | 
| 1.1135 | 314 | 0.0516 | 
| 1.1170 | 315 | 0.1195 | 
| 1.1206 | 316 | 0.1026 | 
| 1.1241 | 317 | 0.0387 | 
| 1.1277 | 318 | 0.1057 | 
| 1.1312 | 319 | 0.0332 | 
| 1.1348 | 320 | 0.033 | 
| 1.1383 | 321 | 0.0648 | 
| 1.1418 | 322 | 0.0067 | 
| 1.1454 | 323 | 0.0402 | 
| 1.1489 | 324 | 0.1376 | 
| 1.1525 | 325 | 0.0852 | 
| 1.1560 | 326 | 0.0245 | 
| 1.1596 | 327 | 0.087 | 
| 1.1631 | 328 | 0.0403 | 
| 1.1667 | 329 | 0.0998 | 
| 1.1702 | 330 | 0.0634 | 
| 1.1738 | 331 | 0.0218 | 
| 1.1773 | 332 | 0.1244 | 
| 1.1809 | 333 | 0.1178 | 
| 1.1844 | 334 | 0.1135 | 
| 1.1879 | 335 | 0.0721 | 
| 1.1915 | 336 | 0.0427 | 
| 1.1950 | 337 | 0.0314 | 
| 1.1986 | 338 | 0.0577 | 
| 1.2021 | 339 | 0.0337 | 
| 1.2057 | 340 | 0.0312 | 
| 1.2092 | 341 | 0.0336 | 
| 1.2128 | 342 | 0.0289 | 
| 1.2163 | 343 | 0.0946 | 
| 1.2199 | 344 | 0.2581 | 
| 1.2234 | 345 | 0.1359 | 
| 1.2270 | 346 | 0.0223 | 
| 1.2305 | 347 | 0.055 | 
| 1.2340 | 348 | 0.0591 | 
| 1.2376 | 349 | 0.0286 | 
| 1.2411 | 350 | 0.0128 | 
| 1.2447 | 351 | 0.0676 | 
| 1.2482 | 352 | 0.0744 | 
| 1.2518 | 353 | 0.0208 | 
| 1.2553 | 354 | 0.0877 | 
| 1.2589 | 355 | 0.0759 | 
| 1.2624 | 356 | 0.052 | 
| 1.2660 | 357 | 0.2666 | 
| 1.2695 | 358 | 0.0455 | 
| 1.2730 | 359 | 0.0893 | 
| 1.2766 | 360 | 0.1706 | 
| 1.2801 | 361 | 0.059 | 
| 1.2837 | 362 | 0.049 | 
| 1.2872 | 363 | 0.1249 | 
| 1.2908 | 364 | 0.0229 | 
| 1.2943 | 365 | 0.1088 | 
| 1.2979 | 366 | 0.198 | 
| 1.3014 | 367 | 0.2119 | 
| 1.3050 | 368 | 0.0397 | 
| 1.3085 | 369 | 0.1772 | 
| 1.3121 | 370 | 0.1251 | 
| 1.3156 | 371 | 0.0286 | 
| 1.3191 | 372 | 0.0273 | 
| 1.3227 | 373 | 0.1161 | 
| 1.3262 | 374 | 0.1128 | 
| 1.3298 | 375 | 0.1323 | 
| 1.3333 | 376 | 0.0245 | 
| 1.3369 | 377 | 0.0342 | 
| 1.3404 | 378 | 0.1177 | 
| 1.3440 | 379 | 0.0584 | 
| 1.3475 | 380 | 0.0164 | 
| 1.3511 | 381 | 0.1174 | 
| 1.3546 | 382 | 0.043 | 
| 1.3582 | 383 | 0.0706 | 
| 1.3617 | 384 | 0.0862 | 
| 1.3652 | 385 | 0.1093 | 
| 1.3688 | 386 | 0.0849 | 
| 1.3723 | 387 | 0.0252 | 
| 1.3759 | 388 | 0.0517 | 
| 1.3794 | 389 | 0.0634 | 
| 1.3830 | 390 | 0.0526 | 
| 1.3865 | 391 | 0.1388 | 
| 1.3901 | 392 | 0.0747 | 
| 1.3936 | 393 | 0.0362 | 
| 1.3972 | 394 | 0.1148 | 
| 1.4007 | 395 | 0.0208 | 
| 1.4043 | 396 | 0.1426 | 
| 1.4078 | 397 | 0.1611 | 
| 1.4113 | 398 | 0.0302 | 
| 1.4149 | 399 | 0.0446 | 
| 1.4184 | 400 | 0.0182 | 
| 1.4220 | 401 | 0.089 | 
| 1.4255 | 402 | 0.1423 | 
| 1.4291 | 403 | 0.1599 | 
| 1.4326 | 404 | 0.0438 | 
| 1.4362 | 405 | 0.0103 | 
| 1.4397 | 406 | 0.083 | 
| 1.4433 | 407 | 0.0914 | 
| 1.4468 | 408 | 0.0436 | 
| 1.4504 | 409 | 0.124 | 
| 1.4539 | 410 | 0.0896 | 
| 1.4574 | 411 | 0.256 | 
| 1.4610 | 412 | 0.0061 | 
| 1.4645 | 413 | 0.0529 | 
| 1.4681 | 414 | 0.0851 | 
| 1.4716 | 415 | 0.08 | 
| 1.4752 | 416 | 0.0115 | 
| 1.4787 | 417 | 0.0784 | 
| 1.4823 | 418 | 0.0321 | 
| 1.4858 | 419 | 0.0976 | 
| 1.4894 | 420 | 0.0725 | 
| 1.4929 | 421 | 0.0834 | 
| 1.4965 | 422 | 0.122 | 
| 1.5 | 423 | 0.1294 | 
| 1.5035 | 424 | 0.2754 | 
| 1.5071 | 425 | 0.0884 | 
| 1.5106 | 426 | 0.076 | 
| 1.5142 | 427 | 0.0799 | 
| 1.5177 | 428 | 0.0439 | 
| 1.5213 | 429 | 0.0943 | 
| 1.5248 | 430 | 0.077 | 
| 1.5284 | 431 | 0.0696 | 
| 1.5319 | 432 | 0.0251 | 
| 1.5355 | 433 | 0.1715 | 
| 1.5390 | 434 | 0.0913 | 
| 1.5426 | 435 | 0.0251 | 
| 1.5461 | 436 | 0.0642 | 
| 1.5496 | 437 | 0.0375 | 
| 1.5532 | 438 | 0.0381 | 
| 1.5567 | 439 | 0.0628 | 
| 1.5603 | 440 | 0.095 | 
| 1.5638 | 441 | 0.0441 | 
| 1.5674 | 442 | 0.0496 | 
| 1.5709 | 443 | 0.0531 | 
| 1.5745 | 444 | 0.0304 | 
| 1.5780 | 445 | 0.2032 | 
| 1.5816 | 446 | 0.109 | 
| 1.5851 | 447 | 0.1481 | 
| 1.5887 | 448 | 0.0706 | 
| 1.5922 | 449 | 0.0346 | 
| 1.5957 | 450 | 0.0364 | 
| 1.5993 | 451 | 0.0513 | 
| 1.6028 | 452 | 0.3153 | 
| 1.6064 | 453 | 0.1135 | 
| 1.6099 | 454 | 0.1034 | 
| 1.6135 | 455 | 0.0566 | 
| 1.6170 | 456 | 0.0707 | 
| 1.6206 | 457 | 0.1564 | 
| 1.6241 | 458 | 0.1602 | 
| 1.6277 | 459 | 0.0149 | 
| 1.6312 | 460 | 0.1243 | 
| 1.6348 | 461 | 0.0579 | 
| 1.6383 | 462 | 0.1693 | 
| 1.6418 | 463 | 0.0911 | 
| 1.6454 | 464 | 0.0278 | 
| 1.6489 | 465 | 0.0315 | 
| 1.6525 | 466 | 0.0176 | 
| 1.6560 | 467 | 0.1197 | 
| 1.6596 | 468 | 0.0162 | 
| 1.6631 | 469 | 0.0492 | 
| 1.6667 | 470 | 0.0495 | 
| 1.6702 | 471 | 0.0318 | 
| 1.6738 | 472 | 0.0703 | 
| 1.6773 | 473 | 0.0175 | 
| 1.6809 | 474 | 0.1457 | 
| 1.6844 | 475 | 0.026 | 
| 1.6879 | 476 | 0.067 | 
| 1.6915 | 477 | 0.0657 | 
| 1.6950 | 478 | 0.1421 | 
| 1.6986 | 479 | 0.0341 | 
| 1.7021 | 480 | 0.022 | 
| 1.7057 | 481 | 0.0641 | 
| 1.7092 | 482 | 0.1315 | 
| 1.7128 | 483 | 0.0328 | 
| 1.7163 | 484 | 0.0489 | 
| 1.7199 | 485 | 0.0199 | 
| 1.7234 | 486 | 0.0475 | 
| 1.7270 | 487 | 0.0662 | 
| 1.7305 | 488 | 0.0133 | 
| 1.7340 | 489 | 0.0081 | 
| 1.7376 | 490 | 0.0356 | 
| 1.7411 | 491 | 0.092 | 
| 1.7447 | 492 | 0.0653 | 
| 1.7482 | 493 | 0.0457 | 
| 1.7518 | 494 | 0.0949 | 
| 1.7553 | 495 | 0.0108 | 
| 1.7589 | 496 | 0.0287 | 
| 1.7624 | 497 | 0.1043 | 
| 1.7660 | 498 | 0.0166 | 
| 1.7695 | 499 | 0.0068 | 
| 1.7730 | 500 | 0.1521 | 
| 1.7766 | 501 | 0.0356 | 
| 1.7801 | 502 | 0.0083 | 
| 1.7837 | 503 | 0.1221 | 
| 1.7872 | 504 | 0.046 | 
| 1.7908 | 505 | 0.0339 | 
| 1.7943 | 506 | 0.021 | 
| 1.7979 | 507 | 0.1706 | 
| 1.8014 | 508 | 0.0176 | 
| 1.8050 | 509 | 0.0275 | 
| 1.8085 | 510 | 0.0521 | 
| 1.8121 | 511 | 0.1083 | 
| 1.8156 | 512 | 0.098 | 
| 1.8191 | 513 | 0.0746 | 
| 1.8227 | 514 | 0.0944 | 
| 1.8262 | 515 | 0.075 | 
| 1.8298 | 516 | 0.0997 | 
| 1.8333 | 517 | 0.0416 | 
| 1.8369 | 518 | 0.154 | 
| 1.8404 | 519 | 0.1534 | 
| 1.8440 | 520 | 0.0387 | 
| 1.8475 | 521 | 0.0957 | 
| 1.8511 | 522 | 0.0136 | 
| 1.8546 | 523 | 0.0426 | 
| 1.8582 | 524 | 0.1499 | 
| 1.8617 | 525 | 0.0111 | 
| 1.8652 | 526 | 0.122 | 
| 1.8688 | 527 | 0.2204 | 
| 1.8723 | 528 | 0.1677 | 
| 1.8759 | 529 | 0.0298 | 
| 1.8794 | 530 | 0.0873 | 
| 1.8830 | 531 | 0.0747 | 
| 1.8865 | 532 | 0.0849 | 
| 1.8901 | 533 | 0.0525 | 
| 1.8936 | 534 | 0.0233 | 
| 1.8972 | 535 | 0.0805 | 
| 1.9007 | 536 | 0.0236 | 
| 1.9043 | 537 | 0.142 | 
| 1.9078 | 538 | 0.0585 | 
| 1.9113 | 539 | 0.0271 | 
| 1.9149 | 540 | 0.1606 | 
| 1.9184 | 541 | 0.2148 | 
| 1.9220 | 542 | 0.0568 | 
| 1.9255 | 543 | 0.0248 | 
| 1.9291 | 544 | 0.0878 | 
| 1.9326 | 545 | 0.0044 | 
| 1.9362 | 546 | 0.0354 | 
| 1.9397 | 547 | 0.0638 | 
| 1.9433 | 548 | 0.1875 | 
| 1.9468 | 549 | 0.031 | 
| 1.9504 | 550 | 0.0547 | 
| 1.9539 | 551 | 0.1292 | 
| 1.9574 | 552 | 0.23 | 
| 1.9610 | 553 | 0.0913 | 
| 1.9645 | 554 | 0.0561 | 
| 1.9681 | 555 | 0.0189 | 
| 1.9716 | 556 | 0.0177 | 
| 1.9752 | 557 | 0.0195 | 
| 1.9787 | 558 | 0.1032 | 
| 1.9823 | 559 | 0.1502 | 
| 1.9858 | 560 | 0.0457 | 
| 1.9894 | 561 | 0.0577 | 
| 1.9929 | 562 | 0.1172 | 
| 1.9965 | 563 | 0.0504 | 
| 2.0 | 564 | 0.0374 | 
| 2.0035 | 565 | 0.1079 | 
| 2.0071 | 566 | 0.0609 | 
| 2.0106 | 567 | 0.0366 | 
| 2.0142 | 568 | 0.0674 | 
| 2.0177 | 569 | 0.1084 | 
| 2.0213 | 570 | 0.066 | 
| 2.0248 | 571 | 0.0102 | 
| 2.0284 | 572 | 0.0876 | 
| 2.0319 | 573 | 0.0407 | 
| 2.0355 | 574 | 0.0581 | 
| 2.0390 | 575 | 0.1215 | 
| 2.0426 | 576 | 0.0068 | 
| 2.0461 | 577 | 0.1015 | 
| 2.0496 | 578 | 0.0047 | 
| 2.0532 | 579 | 0.0925 | 
| 2.0567 | 580 | 0.0836 | 
| 2.0603 | 581 | 0.021 | 
| 2.0638 | 582 | 0.0209 | 
| 2.0674 | 583 | 0.0702 | 
| 2.0709 | 584 | 0.0117 | 
| 2.0745 | 585 | 0.0517 | 
| 2.0780 | 586 | 0.061 | 
| 2.0816 | 587 | 0.0207 | 
| 2.0851 | 588 | 0.034 | 
| 2.0887 | 589 | 0.1045 | 
| 2.0922 | 590 | 0.03 | 
| 2.0957 | 591 | 0.0081 | 
| 2.0993 | 592 | 0.0234 | 
| 2.1028 | 593 | 0.073 | 
| 2.1064 | 594 | 0.0074 | 
| 2.1099 | 595 | 0.0655 | 
| 2.1135 | 596 | 0.079 | 
| 2.1170 | 597 | 0.0358 | 
| 2.1206 | 598 | 0.1006 | 
| 2.1241 | 599 | 0.0624 | 
| 2.1277 | 600 | 0.0479 | 
| 2.1312 | 601 | 0.0105 | 
| 2.1348 | 602 | 0.0448 | 
| 2.1383 | 603 | 0.0305 | 
| 2.1418 | 604 | 0.0432 | 
| 2.1454 | 605 | 0.0771 | 
| 2.1489 | 606 | 0.0545 | 
| 2.1525 | 607 | 0.0299 | 
| 2.1560 | 608 | 0.0712 | 
| 2.1596 | 609 | 0.1006 | 
| 2.1631 | 610 | 0.0117 | 
| 2.1667 | 611 | 0.0462 | 
| 2.1702 | 612 | 0.0576 | 
| 2.1738 | 613 | 0.0696 | 
| 2.1773 | 614 | 0.0685 | 
| 2.1809 | 615 | 0.0596 | 
| 2.1844 | 616 | 0.0127 | 
| 2.1879 | 617 | 0.0089 | 
| 2.1915 | 618 | 0.0135 | 
| 2.1950 | 619 | 0.2405 | 
| 2.1986 | 620 | 0.0212 | 
| 2.2021 | 621 | 0.0637 | 
| 2.2057 | 622 | 0.1356 | 
| 2.2092 | 623 | 0.0943 | 
| 2.2128 | 624 | 0.0147 | 
| 2.2163 | 625 | 0.0038 | 
| 2.2199 | 626 | 0.0624 | 
| 2.2234 | 627 | 0.016 | 
| 2.2270 | 628 | 0.032 | 
| 2.2305 | 629 | 0.0154 | 
| 2.2340 | 630 | 0.0724 | 
| 2.2376 | 631 | 0.008 | 
| 2.2411 | 632 | 0.0877 | 
| 2.2447 | 633 | 0.0228 | 
| 2.2482 | 634 | 0.1929 | 
| 2.2518 | 635 | 0.026 | 
| 2.2553 | 636 | 0.0117 | 
| 2.2589 | 637 | 0.0325 | 
| 2.2624 | 638 | 0.0127 | 
| 2.2660 | 639 | 0.0054 | 
| 2.2695 | 640 | 0.0909 | 
| 2.2730 | 641 | 0.0326 | 
| 2.2766 | 642 | 0.0291 | 
| 2.2801 | 643 | 0.0499 | 
| 2.2837 | 644 | 0.0394 | 
| 2.2872 | 645 | 0.0422 | 
| 2.2908 | 646 | 0.0156 | 
| 2.2943 | 647 | 0.0626 | 
| 2.2979 | 648 | 0.0143 | 
| 2.3014 | 649 | 0.0707 | 
| 2.3050 | 650 | 0.0474 | 
| 2.3085 | 651 | 0.0387 | 
| 2.3121 | 652 | 0.104 | 
| 2.3156 | 653 | 0.0981 | 
| 2.3191 | 654 | 0.0284 | 
| 2.3227 | 655 | 0.0123 | 
| 2.3262 | 656 | 0.1346 | 
| 2.3298 | 657 | 0.0157 | 
| 2.3333 | 658 | 0.1276 | 
| 2.3369 | 659 | 0.0634 | 
| 2.3404 | 660 | 0.0327 | 
| 2.3440 | 661 | 0.0633 | 
| 2.3475 | 662 | 0.0618 | 
| 2.3511 | 663 | 0.0171 | 
| 2.3546 | 664 | 0.141 | 
| 2.3582 | 665 | 0.0626 | 
| 2.3617 | 666 | 0.0149 | 
| 2.3652 | 667 | 0.0455 | 
| 2.3688 | 668 | 0.0507 | 
| 2.3723 | 669 | 0.0492 | 
| 2.3759 | 670 | 0.1528 | 
| 2.3794 | 671 | 0.0484 | 
| 2.3830 | 672 | 0.0826 | 
| 2.3865 | 673 | 0.044 | 
| 2.3901 | 674 | 0.2045 | 
| 2.3936 | 675 | 0.0083 | 
| 2.3972 | 676 | 0.0109 | 
| 2.4007 | 677 | 0.0262 | 
| 2.4043 | 678 | 0.0965 | 
| 2.4078 | 679 | 0.1926 | 
| 2.4113 | 680 | 0.0494 | 
| 2.4149 | 681 | 0.1212 | 
| 2.4184 | 682 | 0.0467 | 
| 2.4220 | 683 | 0.0093 | 
| 2.4255 | 684 | 0.0662 | 
| 2.4291 | 685 | 0.0487 | 
| 2.4326 | 686 | 0.1391 | 
| 2.4362 | 687 | 0.1416 | 
| 2.4397 | 688 | 0.1691 | 
| 2.4433 | 689 | 0.0936 | 
| 2.4468 | 690 | 0.1812 | 
| 2.4504 | 691 | 0.0327 | 
| 2.4539 | 692 | 0.1146 | 
| 2.4574 | 693 | 0.0711 | 
| 2.4610 | 694 | 0.0947 | 
| 2.4645 | 695 | 0.0525 | 
| 2.4681 | 696 | 0.0223 | 
| 2.4716 | 697 | 0.0266 | 
| 2.4752 | 698 | 0.206 | 
| 2.4787 | 699 | 0.0669 | 
| 2.4823 | 700 | 0.0421 | 
| 2.4858 | 701 | 0.0198 | 
| 2.4894 | 702 | 0.0255 | 
| 2.4929 | 703 | 0.008 | 
| 2.4965 | 704 | 0.0183 | 
| 2.5 | 705 | 0.0498 | 
| 2.5035 | 706 | 0.0839 | 
| 2.5071 | 707 | 0.0219 | 
| 2.5106 | 708 | 0.0977 | 
| 2.5142 | 709 | 0.0206 | 
| 2.5177 | 710 | 0.0051 | 
| 2.5213 | 711 | 0.0199 | 
| 2.5248 | 712 | 0.0366 | 
| 2.5284 | 713 | 0.01 | 
| 2.5319 | 714 | 0.1622 | 
| 2.5355 | 715 | 0.0452 | 
| 2.5390 | 716 | 0.0681 | 
| 2.5426 | 717 | 0.0103 | 
| 2.5461 | 718 | 0.0059 | 
| 2.5496 | 719 | 0.0493 | 
| 2.5532 | 720 | 0.016 | 
| 2.5567 | 721 | 0.134 | 
| 2.5603 | 722 | 0.0119 | 
| 2.5638 | 723 | 0.1173 | 
| 2.5674 | 724 | 0.2206 | 
| 2.5709 | 725 | 0.0368 | 
| 2.5745 | 726 | 0.0176 | 
| 2.5780 | 727 | 0.0599 | 
| 2.5816 | 728 | 0.123 | 
| 2.5851 | 729 | 0.0764 | 
| 2.5887 | 730 | 0.0695 | 
| 2.5922 | 731 | 0.0405 | 
| 2.5957 | 732 | 0.012 | 
| 2.5993 | 733 | 0.0469 | 
| 2.6028 | 734 | 0.0142 | 
| 2.6064 | 735 | 0.1236 | 
| 2.6099 | 736 | 0.0194 | 
| 2.6135 | 737 | 0.115 | 
| 2.6170 | 738 | 0.105 | 
| 2.6206 | 739 | 0.0937 | 
| 2.6241 | 740 | 0.1916 | 
| 2.6277 | 741 | 0.0903 | 
| 2.6312 | 742 | 0.1579 | 
| 2.6348 | 743 | 0.0902 | 
| 2.6383 | 744 | 0.0304 | 
| 2.6418 | 745 | 0.0881 | 
| 2.6454 | 746 | 0.0646 | 
| 2.6489 | 747 | 0.0941 | 
| 2.6525 | 748 | 0.0204 | 
| 2.6560 | 749 | 0.1679 | 
| 2.6596 | 750 | 0.028 | 
| 2.6631 | 751 | 0.0205 | 
| 2.6667 | 752 | 0.0307 | 
| 2.6702 | 753 | 0.0365 | 
| 2.6738 | 754 | 0.0141 | 
| 2.6773 | 755 | 0.0212 | 
| 2.6809 | 756 | 0.0447 | 
| 2.6844 | 757 | 0.1072 | 
| 2.6879 | 758 | 0.0332 | 
| 2.6915 | 759 | 0.0513 | 
| 2.6950 | 760 | 0.062 | 
| 2.6986 | 761 | 0.0941 | 
| 2.7021 | 762 | 0.0201 | 
| 2.7057 | 763 | 0.2132 | 
| 2.7092 | 764 | 0.0323 | 
| 2.7128 | 765 | 0.0654 | 
| 2.7163 | 766 | 0.059 | 
| 2.7199 | 767 | 0.1027 | 
| 2.7234 | 768 | 0.0091 | 
| 2.7270 | 769 | 0.0585 | 
| 2.7305 | 770 | 0.0102 | 
| 2.7340 | 771 | 0.0265 | 
| 2.7376 | 772 | 0.0403 | 
| 2.7411 | 773 | 0.0913 | 
| 2.7447 | 774 | 0.0212 | 
| 2.7482 | 775 | 0.0423 | 
| 2.7518 | 776 | 0.083 | 
| 2.7553 | 777 | 0.0073 | 
| 2.7589 | 778 | 0.0815 | 
| 2.7624 | 779 | 0.0786 | 
| 2.7660 | 780 | 0.1079 | 
| 2.7695 | 781 | 0.0477 | 
| 2.7730 | 782 | 0.116 | 
| 2.7766 | 783 | 0.0523 | 
| 2.7801 | 784 | 0.049 | 
| 2.7837 | 785 | 0.0153 | 
| 2.7872 | 786 | 0.0173 | 
| 2.7908 | 787 | 0.0656 | 
| 2.7943 | 788 | 0.0094 | 
| 2.7979 | 789 | 0.0757 | 
| 2.8014 | 790 | 0.0924 | 
| 2.8050 | 791 | 0.0717 | 
| 2.8085 | 792 | 0.011 | 
| 2.8121 | 793 | 0.0312 | 
| 2.8156 | 794 | 0.0188 | 
| 2.8191 | 795 | 0.0244 | 
| 2.8227 | 796 | 0.0138 | 
| 2.8262 | 797 | 0.0956 | 
| 2.8298 | 798 | 0.0125 | 
| 2.8333 | 799 | 0.0196 | 
| 2.8369 | 800 | 0.0766 | 
| 2.8404 | 801 | 0.0105 | 
| 2.8440 | 802 | 0.0347 | 
| 2.8475 | 803 | 0.1152 | 
| 2.8511 | 804 | 0.0745 | 
| 2.8546 | 805 | 0.0275 | 
| 2.8582 | 806 | 0.1096 | 
| 2.8617 | 807 | 0.0571 | 
| 2.8652 | 808 | 0.008 | 
| 2.8688 | 809 | 0.0428 | 
| 2.8723 | 810 | 0.0639 | 
| 2.8759 | 811 | 0.1364 | 
| 2.8794 | 812 | 0.062 | 
| 2.8830 | 813 | 0.0782 | 
| 2.8865 | 814 | 0.0311 | 
| 2.8901 | 815 | 0.1234 | 
| 2.8936 | 816 | 0.0302 | 
| 2.8972 | 817 | 0.0984 | 
| 2.9007 | 818 | 0.0141 | 
| 2.9043 | 819 | 0.1342 | 
| 2.9078 | 820 | 0.0115 | 
| 2.9113 | 821 | 0.0608 | 
| 2.9149 | 822 | 0.0246 | 
| 2.9184 | 823 | 0.0388 | 
| 2.9220 | 824 | 0.0557 | 
| 2.9255 | 825 | 0.011 | 
| 2.9291 | 826 | 0.0262 | 
| 2.9326 | 827 | 0.0655 | 
| 2.9362 | 828 | 0.0843 | 
| 2.9397 | 829 | 0.0549 | 
| 2.9433 | 830 | 0.0791 | 
| 2.9468 | 831 | 0.0254 | 
| 2.9504 | 832 | 0.1365 | 
| 2.9539 | 833 | 0.2078 | 
| 2.9574 | 834 | 0.0485 | 
| 2.9610 | 835 | 0.0309 | 
| 2.9645 | 836 | 0.0974 | 
| 2.9681 | 837 | 0.004 | 
| 2.9716 | 838 | 0.1136 | 
| 2.9752 | 839 | 0.0227 | 
| 2.9787 | 840 | 0.0458 | 
| 2.9823 | 841 | 0.016 | 
| 2.9858 | 842 | 0.1003 | 
| 2.9894 | 843 | 0.0289 | 
| 2.9929 | 844 | 0.0702 | 
| 2.9965 | 845 | 0.055 | 
| 3.0 | 846 | 0.2404 | 
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Base model
sentence-transformers/all-MiniLM-L6-v2