PAN Model Card

Table of Contents:

Load trained model

import segmentation_models_pytorch as smp

model = smp.from_pretrained("<save-directory-or-this-repo>")

Model init parameters

model_init_params = {
    "encoder_name": "resnet152",
    "encoder_depth": 5,
    "encoder_weights": "imagenet",
    "encoder_output_stride": 16,
    "decoder_channels": 32,
    "decoder_interpolation": "bilinear",
    "in_channels": 3,
    "classes": 1,
    "activation": None,
    "upsampling": 4,
    "aux_params": None
}

Model metrics

[
    {
        "test_per_image_iou": 0.8172159790992737,
        "test_dataset_iou": 0.8556613922119141
    }
]

Dataset

Dataset name: VisionPipe

More Information

This model has been pushed to the Hub using the PytorchModelHubMixin

Downloads last month
7
Safetensors
Model size
59M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support