metadata
license: apache-2.0
base_model: DmitryPogrebnoy/MedRuRobertaLarge
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: MedRuRobertaLarge_neg
results: []
MedRuRobertaLarge_neg
This model is a fine-tuned version of DmitryPogrebnoy/MedRuRobertaLarge on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4946
- Precision: 0.5932
- Recall: 0.5804
- F1: 0.5868
- Accuracy: 0.9015
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 50 | 0.6600 | 0.0 | 0.0 | 0.0 | 0.7759 |
No log | 2.0 | 100 | 0.5893 | 0.0 | 0.0 | 0.0 | 0.7826 |
No log | 3.0 | 150 | 0.4690 | 0.0265 | 0.0173 | 0.0210 | 0.8164 |
No log | 4.0 | 200 | 0.4564 | 0.0979 | 0.1252 | 0.1099 | 0.8204 |
No log | 5.0 | 250 | 0.3628 | 0.1881 | 0.2852 | 0.2266 | 0.8538 |
No log | 6.0 | 300 | 0.3105 | 0.3469 | 0.3622 | 0.3544 | 0.8901 |
No log | 7.0 | 350 | 0.3382 | 0.4084 | 0.3738 | 0.3903 | 0.8909 |
No log | 8.0 | 400 | 0.2926 | 0.4774 | 0.4682 | 0.4728 | 0.9020 |
No log | 9.0 | 450 | 0.2955 | 0.4630 | 0.4817 | 0.4721 | 0.9046 |
0.3854 | 10.0 | 500 | 0.3161 | 0.5367 | 0.4933 | 0.5141 | 0.9080 |
0.3854 | 11.0 | 550 | 0.3103 | 0.4612 | 0.6069 | 0.5241 | 0.9018 |
0.3854 | 12.0 | 600 | 0.3020 | 0.5614 | 0.6166 | 0.5877 | 0.9136 |
0.3854 | 13.0 | 650 | 0.3738 | 0.5625 | 0.5896 | 0.5757 | 0.9157 |
0.3854 | 14.0 | 700 | 0.3322 | 0.4834 | 0.5877 | 0.5304 | 0.9031 |
0.3854 | 15.0 | 750 | 0.3619 | 0.4855 | 0.5472 | 0.5145 | 0.9083 |
0.3854 | 16.0 | 800 | 0.3597 | 0.4815 | 0.6763 | 0.5625 | 0.9018 |
0.3854 | 17.0 | 850 | 0.4065 | 0.5488 | 0.6281 | 0.5858 | 0.9145 |
0.3854 | 18.0 | 900 | 0.4491 | 0.6047 | 0.6513 | 0.6271 | 0.9184 |
0.3854 | 19.0 | 950 | 0.4184 | 0.4972 | 0.6898 | 0.5779 | 0.8986 |
0.0771 | 20.0 | 1000 | 0.3366 | 0.5929 | 0.6089 | 0.6008 | 0.9238 |
0.0771 | 21.0 | 1050 | 0.6161 | 0.6834 | 0.5241 | 0.5932 | 0.9009 |
0.0771 | 22.0 | 1100 | 0.6387 | 0.3497 | 0.6859 | 0.4632 | 0.8377 |
0.0771 | 23.0 | 1150 | 0.3559 | 0.6004 | 0.6224 | 0.6112 | 0.9198 |
0.0771 | 24.0 | 1200 | 0.4161 | 0.5926 | 0.6166 | 0.6043 | 0.9203 |
0.0771 | 25.0 | 1250 | 0.4341 | 0.6365 | 0.6108 | 0.6234 | 0.9199 |
0.0771 | 26.0 | 1300 | 0.3910 | 0.6184 | 0.5838 | 0.6006 | 0.9153 |
0.0771 | 27.0 | 1350 | 0.3706 | 0.5396 | 0.6435 | 0.5870 | 0.9209 |
0.0771 | 28.0 | 1400 | 0.5059 | 0.5833 | 0.6069 | 0.5949 | 0.9157 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.2