DimasikKurd's picture
Training complete
10f03e0 verified
|
raw
history blame
4.06 kB
metadata
license: apache-2.0
base_model: DmitryPogrebnoy/MedRuRobertaLarge
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: MedRuRobertaLarge_neg
    results: []

MedRuRobertaLarge_neg

This model is a fine-tuned version of DmitryPogrebnoy/MedRuRobertaLarge on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4946
  • Precision: 0.5932
  • Recall: 0.5804
  • F1: 0.5868
  • Accuracy: 0.9015

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 50 0.6600 0.0 0.0 0.0 0.7759
No log 2.0 100 0.5893 0.0 0.0 0.0 0.7826
No log 3.0 150 0.4690 0.0265 0.0173 0.0210 0.8164
No log 4.0 200 0.4564 0.0979 0.1252 0.1099 0.8204
No log 5.0 250 0.3628 0.1881 0.2852 0.2266 0.8538
No log 6.0 300 0.3105 0.3469 0.3622 0.3544 0.8901
No log 7.0 350 0.3382 0.4084 0.3738 0.3903 0.8909
No log 8.0 400 0.2926 0.4774 0.4682 0.4728 0.9020
No log 9.0 450 0.2955 0.4630 0.4817 0.4721 0.9046
0.3854 10.0 500 0.3161 0.5367 0.4933 0.5141 0.9080
0.3854 11.0 550 0.3103 0.4612 0.6069 0.5241 0.9018
0.3854 12.0 600 0.3020 0.5614 0.6166 0.5877 0.9136
0.3854 13.0 650 0.3738 0.5625 0.5896 0.5757 0.9157
0.3854 14.0 700 0.3322 0.4834 0.5877 0.5304 0.9031
0.3854 15.0 750 0.3619 0.4855 0.5472 0.5145 0.9083
0.3854 16.0 800 0.3597 0.4815 0.6763 0.5625 0.9018
0.3854 17.0 850 0.4065 0.5488 0.6281 0.5858 0.9145
0.3854 18.0 900 0.4491 0.6047 0.6513 0.6271 0.9184
0.3854 19.0 950 0.4184 0.4972 0.6898 0.5779 0.8986
0.0771 20.0 1000 0.3366 0.5929 0.6089 0.6008 0.9238
0.0771 21.0 1050 0.6161 0.6834 0.5241 0.5932 0.9009
0.0771 22.0 1100 0.6387 0.3497 0.6859 0.4632 0.8377
0.0771 23.0 1150 0.3559 0.6004 0.6224 0.6112 0.9198
0.0771 24.0 1200 0.4161 0.5926 0.6166 0.6043 0.9203
0.0771 25.0 1250 0.4341 0.6365 0.6108 0.6234 0.9199
0.0771 26.0 1300 0.3910 0.6184 0.5838 0.6006 0.9153
0.0771 27.0 1350 0.3706 0.5396 0.6435 0.5870 0.9209
0.0771 28.0 1400 0.5059 0.5833 0.6069 0.5949 0.9157

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.2
  • Datasets 2.1.0
  • Tokenizers 0.15.2