Model Name : ํํ์ด(futfut)
Model Concept
- ํ์ด ๋๋ฉ์ธ ์น์ ํ ๋์ฐ๋ฏธ ์ฑ๋ด์ ๊ตฌ์ถํ๊ธฐ ์ํด LLM ํ์ธํ๋๊ณผ RAG๋ฅผ ์ด์ฉํ์์ต๋๋ค.
- Base Model : zephyr-7b-beta
- ํํ์ด์ ๋งํฌ๋ 'ํด์'์ฒด๋ฅผ ์ฌ์ฉํ์ฌ ๋ง๋์ '์ผ๋ง๋ ์ง ๋ฌผ์ด๋ณด์ธ์
! ํํ!'๋ก ์ข ๋ฃํฉ๋๋ค.
Serving by Fast API
- Git repo : Dongwooks
Summary:
Unsloth ํจํค์ง๋ฅผ ์ฌ์ฉํ์ฌ LoRA ์งํํ์์ต๋๋ค.
SFT Trainer๋ฅผ ํตํด ํ๋ จ์ ์งํ
ํ์ฉ ๋ฐ์ดํฐ
- q_a_korean_futsal
- ๋งํฌ ํ์ต์ ์ํด 'ํด์'์ฒด๋ก ๋ณํํ๊ณ ์ธ์ฟ๋ง์ ๋ฃ์ด ๋ชจ๋ธ ์ปจ์ ์ ์ ์งํ์์ต๋๋ค.
- q_a_korean_futsal
Environment : Colab ํ๊ฒฝ์์ ์งํํ์์ผ๋ฉฐ L4 GPU๋ฅผ ์ฌ์ฉํ์์ต๋๋ค.
Model Load
#!pip install transformers==4.40.0 accelerate import os import torch from transformers import AutoTokenizer, AutoModelForCausalLM model_id = 'Dongwookss/small_fut_final' tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", ) model.eval()
Query
from transformers import TextStreamer
PROMPT = '''Below is an instruction that describes a task. Write a response that appropriately completes the request.
์ ์ํ๋ context์์๋ง ๋๋ตํ๊ณ context์ ์๋ ๋ด์ฉ์ ๋ชจ๋ฅด๊ฒ ๋ค๊ณ ๋๋ตํด'''
messages = [
{"role": "system", "content": f"{PROMPT}"},
{"role": "user", "content": f"{instruction}"}
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
text_streamer = TextStreamer(tokenizer)
_ = model.generate(
input_ids,
max_new_tokens=4096,
eos_token_id=terminators,
do_sample=True,
streamer = text_streamer,
temperature=0.6,
top_p=0.9,
repetition_penalty = 1.1
)
- Downloads last month
- 54
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.