SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
Model Sources
Model Labels
Label |
Examples |
positive |
- 'klein , charming in comedies like american pie and dead-on in election , '
- 'be fruitful '
- 'soulful and '
|
negative |
- 'covered earlier and much better '
- 'it too is a bomb . '
- 'guilty about it '
|
Evaluation
Metrics
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
model = SetFitModel.from_pretrained("DrGwin/setfit-paraphrase-mpnet-base-v2-sst2A")
preds = model("i had to look away - this was god awful . ")
Training Details
Training Set Metrics
Training set |
Min |
Median |
Max |
Word count |
2 |
9.55 |
46 |
Label |
Training Sample Count |
negative |
40 |
positive |
60 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (4, 4)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch |
Step |
Training Loss |
Validation Loss |
0.0030 |
1 |
0.4181 |
- |
0.1506 |
50 |
0.2514 |
- |
0.3012 |
100 |
0.0932 |
- |
0.4518 |
150 |
0.0029 |
- |
0.6024 |
200 |
0.001 |
- |
0.7530 |
250 |
0.0006 |
- |
0.9036 |
300 |
0.0006 |
- |
1.0 |
332 |
- |
0.1722 |
1.0542 |
350 |
0.0014 |
- |
1.2048 |
400 |
0.0004 |
- |
1.3554 |
450 |
0.0004 |
- |
1.5060 |
500 |
0.0095 |
- |
1.6566 |
550 |
0.0003 |
- |
1.8072 |
600 |
0.0003 |
- |
1.9578 |
650 |
0.0003 |
- |
2.0 |
664 |
- |
0.1820 |
2.1084 |
700 |
0.0003 |
- |
2.2590 |
750 |
0.0023 |
- |
2.4096 |
800 |
0.0003 |
- |
2.5602 |
850 |
0.0002 |
- |
2.7108 |
900 |
0.0002 |
- |
2.8614 |
950 |
0.0002 |
- |
3.0 |
996 |
- |
0.1970 |
3.0120 |
1000 |
0.0002 |
- |
3.1627 |
1050 |
0.0003 |
- |
3.3133 |
1100 |
0.0012 |
- |
3.4639 |
1150 |
0.0002 |
- |
3.6145 |
1200 |
0.0002 |
- |
3.7651 |
1250 |
0.0003 |
- |
3.9157 |
1300 |
0.001 |
- |
4.0 |
1328 |
- |
0.1810 |
Framework Versions
- Python: 3.11.11
- SetFit: 1.1.1
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}