Edit model card

wav2vec2-base-Drum_Kit_Sounds

This model is a fine-tuned version of facebook/wav2vec2-base.

It achieves the following results on the evaluation set:

  • Loss: 1.0887
  • Accuracy: 0.7812
  • F1
    • Weighted: 0.7692
    • Micro: 0.7812
    • Macro: 0.7845
  • Recall
    • Weighted: 0.7812
    • Micro: 0.7812
    • Macro: 0.8187
  • Precision
    • Weighted: 0.8717
    • Micro: 0.7812
    • Macro: 0.8534

Model description

This is a multiclass classification of sounds to determine which type of drum is hit in the audio sample. The options are: kick, overheads, snare, and toms.

For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Audio-Projects/Classification/Audio-Drum_Kit_Sounds.ipynb

Intended uses & limitations

This model is intended to demonstrate my ability to solve a complex problem using technology.

Training and evaluation data

Dataset Source: https://www.kaggle.com/datasets/anubhavchhabra/drum-kit-sound-samples

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Accuracy Weighted F1 Micro F1 Macro F1 Weighted Recall Micro Recall Macro Recall Weighted Precision Micro Precision Macro Precision
1.3743 1.0 4 1.3632 0.5625 0.5801 0.5625 0.5678 0.5625 0.5625 0.5670 0.6786 0.5625 0.6429
1.3074 2.0 8 1.3149 0.3438 0.2567 0.3438 0.2696 0.3438 0.3438 0.375 0.3067 0.3438 0.3148
1.2393 3.0 12 1.3121 0.2188 0.0785 0.2188 0.0897 0.2188 0.2188 0.25 0.0479 0.2188 0.0547
1.2317 4.0 16 1.3112 0.2812 0.1800 0.2812 0.2057 0.2812 0.2812 0.3214 0.2698 0.2812 0.3083
1.2107 5.0 20 1.2604 0.4375 0.3030 0.4375 0.3462 0.4375 0.4375 0.5 0.2552 0.4375 0.2917
1.1663 6.0 24 1.2112 0.4688 0.3896 0.4688 0.4310 0.4688 0.4688 0.5268 0.5041 0.4688 0.5404
1.1247 7.0 28 1.1746 0.5938 0.5143 0.5938 0.5603 0.5938 0.5938 0.6562 0.5220 0.5938 0.5609
1.0856 8.0 32 1.1434 0.5938 0.5143 0.5938 0.5603 0.5938 0.5938 0.6562 0.5220 0.5938 0.5609
1.0601 9.0 36 1.1417 0.6562 0.6029 0.6562 0.6389 0.6562 0.6562 0.7125 0.8440 0.6562 0.8217
1.0375 10.0 40 1.1227 0.6875 0.6582 0.6875 0.6831 0.6875 0.6875 0.7330 0.8457 0.6875 0.8237
1.0168 11.0 44 1.1065 0.7812 0.7692 0.7812 0.7845 0.7812 0.7812 0.8187 0.8717 0.7812 0.8534
1.0093 12.0 48 1.0887 0.7812 0.7692 0.7812 0.7845 0.7812 0.7812 0.8187 0.8717 0.7812 0.8534

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.12.1
  • Datasets 2.8.0
  • Tokenizers 0.12.1
Downloads last month
16
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.