setfit_camembert_20250808_140130_rtx4070_optimized

This is a SetFit model fine-tuned for French news classification as part of the AFK.live project.

Model Details

  • Base Model: CamemBERT (camembert-base)
  • Task: Multi-class text classification for news articles
  • Language: French
  • Framework: SetFit

Training Details

  • Training Date: 2025-08-08
  • Accuracy: 0.8700

Categories

The model classifies news articles into the following categories:

  1. Politique nationale française ou belge
  2. Politique internationale
  3. Économie, Fiscalité et Mouvements sociaux
  4. Technologie
  5. Société, Média, Education, Histoire, Justice -
  6. Science et Santé
  7. Culture, Cuisine, Voyages
  8. Sport
  9. Environnement
  10. Faits divers, nécrologie
  11. Outlier
  12. Actualité locale
  13. Pub

Usage

from setfit import SetFitModel

# Load the model
model = SetFitModel.from_pretrained("DyePop/{model_name}")

# Make predictions
predictions = model.predict([
    "Le président a annoncé de nouvelles mesures économiques",
    "L'équipe de France remporte la victoire"
])

Limitations

  • Trained specifically on French news articles (France, Walloon Belgium)
  • Performance may vary on informal or social media text
  • Categories are based on traditional news taxonomy

Citation

If you use this model, please cite the AFK.live project.

Downloads last month
617
Safetensors
Model size
337M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for DyePop/setfit_camembert_20250808_140130_rtx4070_optimized

Finetuned
(127)
this model