drAbreu's picture
End of training
361a174 verified
metadata
library_name: transformers
license: mit
base_model: microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract
tags:
  - generated_from_trainer
datasets:
  - source_data
metrics:
  - precision
  - recall
  - f1
model-index:
  - name: SourceData_NER_v1_0_0_PubMedBERT_base
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: source_data
          type: source_data
          config: NER
          split: validation
          args: NER
        metrics:
          - name: Precision
            type: precision
            value: 0.8140302498537645
          - name: Recall
            type: recall
            value: 0.8535940649005462
          - name: F1
            type: f1
            value: 0.8333428384042887

SourceData_NER_v1_0_0_PubMedBERT_base

This model is a fine-tuned version of microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract on the source_data dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1432
  • Accuracy Score: 0.9557
  • Precision: 0.8140
  • Recall: 0.8536
  • F1: 0.8333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Use adafactor and the args are: No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 2.0

Training results

Training Loss Epoch Step Validation Loss Accuracy Score Precision Recall F1
0.1092 1.0 864 0.1403 0.9520 0.8061 0.8293 0.8175
0.075 2.0 1728 0.1432 0.9557 0.8140 0.8536 0.8333

Framework versions

  • Transformers 4.46.3
  • Pytorch 1.13.1+cu117
  • Datasets 3.1.0
  • Tokenizers 0.20.3