hporta's picture
Upload ViT_SITS_ONLY.yaml
80b15f5 verified
defaults:
- _self_
- global_config
MODEL:
architecture: "ViTFacto"
vit_type: "dinov2_small"
pretrained: True
input_img_res: 264
img_res: 252
train_max_seq_len: 5
val_max_seq_len: 5
input_dim: 14
patch_size: 14
num_classes: 2
out_H: 25
out_W: 25
doy_int_type: "channel"
temp_enc_type: "convlstm"
kernel_size: [3, 3]
n_stack_layers: 1
threshold: 0.5
flag_lora: True
rank_lora: 32
alpha_lora: 32.0
dropout_lora: 0.1
SOLVER:
num_epochs: 20
num_warmup_epochs: 2
loss_function: masked_dice_loss
lr_scheduler: 'cosine'
lr_base: 5e-6
lr_min: 1e-7
lr_start: 1e-7
num_cycles: 1
weight_decay: 0.01
accumulate_grad_batches: 3
interval: "epoch"
### Leveraging RAW *.npy files ###
DATASETS:
kwargs:
mean_file: "${paths.bands_mean}"
std_file: "${paths.bands_std}"
with_loc: False
with_doy: True
# bands: possibility to specify the selected bands.
train:
paths: "${paths.split}"
base_dir: ["${paths.pos_sits}", ${paths.neg_sits}"]
label_dir: "${paths.label}"
batch_size: 12
num_workers: 8
eval:
paths: "${paths.split}"
base_dir: ["${paths.pos_sits}", ${paths.neg_sits}"]
label_dir: "${paths.label}"
batch_size: 12
num_workers: 8
test:
### Leveraging Hf parquet files ###
#DATASETS:
# mode: "huggingface"
# kwargs:
# mean_file: "${paths.bands_mean}"
# std_file: "${paths.bands_std}"
# with_loc: False
# with_doy: True
# bands: possibility to specify the selected bands.
# train:
# data_dir: "${paths.hf_data}"
# batch_size: 24
# num_workers: 8
#
# eval:
# data_dir: "${paths.hf_data}"
# batch_size: 24
# num_workers: 8
CHECKPOINT:
load_from_checkpoint:
experiment_name: "ViT_SITS_ONLY"
save_path: "./results/models"
train_metrics_steps: 200
save_steps: 10000
wandb_project: "${wandb.project}"
wandb_user: "${wandb.user}"
SET-UP:
seed: 42
local_device_ids: [0]