YAML Metadata
Error:
"datasets[0]" with value "Common Voice" is not valid. If possible, use a dataset id from https://hf.co/datasets.
Wav2vec2 Large 100k Voxpopuli fine-tuned in Portuguese using the Common Voice 7.0, TTS-Portuguese Corpus plus data augmentation
Wav2vec2 Large 100k Voxpopuli Wav2vec2 Large 100k Voxpopuli fine-tuned in Portuguese using the Common Voice 7.0, TTS-Portuguese plus data augmentation method based on TTS and voice conversion.
Use this model
from transformers import AutoTokenizer, Wav2Vec2ForCTC
tokenizer = AutoTokenizer.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-Common_Voice_plus_TTS-Dataset_plus_Data_Augmentation-portuguese")
model = Wav2Vec2ForCTC.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-Common_Voice_plus_TTS-Dataset_plus_Data_Augmentation-portuguese")
Results
For the results check the paper
Example test with Common Voice Dataset
dataset = load_dataset("common_voice", "ru", split="test", data_dir="./cv-corpus-7.0-2021-07-21")
resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000)
def map_to_array(batch):
speech, _ = torchaudio.load(batch["path"])
batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
batch["sampling_rate"] = resampler.new_freq
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'")
return batch
ds = dataset.map(map_to_array)
result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys()))
print(wer.compute(predictions=result["predicted"], references=result["target"]))
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Evaluation results
- Test Common Voice 7.0 WERself-reported20.200