YAML Metadata
Error:
"datasets[0]" with value "Common Voice" is not valid. If possible, use a dataset id from https://hf.co/datasets.
Wav2vec2 Large 100k Voxpopuli fine-tuned in Russian using the Common Voice 7.0, MAILABS plus data augmentation
Wav2vec2 Large 100k Voxpopuli Wav2vec2 Large 100k Voxpopuli fine-tuned in Russian using the Common Voice 7.0, M-AILABS plus data augmentation method based on TTS and voice conversion.
Use this model
from transformers import AutoTokenizer, Wav2Vec2ForCTC
tokenizer = AutoTokenizer.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-Common_Voice_plus_TTS-Dataset_plus_Data_Augmentation-russian")
model = Wav2Vec2ForCTC.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-Common_Voice_plus_TTS-Dataset_plus_Data_Augmentation-russian")
Results
For the results check the paper
Example test with Common Voice Dataset
dataset = load_dataset("common_voice", "ru", split="test", data_dir="./cv-corpus-7.0-2021-07-21")
resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000)
def map_to_array(batch):
speech, _ = torchaudio.load(batch["path"])
batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
batch["sampling_rate"] = resampler.new_freq
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'")
return batch
ds = dataset.map(map_to_array)
result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys()))
print(wer.compute(predictions=result["predicted"], references=result["target"]))
- Downloads last month
- 22
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Evaluation results
- Test Common Voice 7.0 WERself-reported19.460