|
--- |
|
license: other |
|
tags: |
|
- image-segmentation |
|
- vision |
|
- generated_from_trainer |
|
model-index: |
|
- name: segformer-finetuned-lane-1k-steps |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# segformer-finetuned-lane-1k-steps |
|
|
|
This model is a fine-tuned version of [nvidia/segformer-b0-finetuned-cityscapes-512-1024](https://huggingface.co/nvidia/segformer-b0-finetuned-cityscapes-512-1024) on the Efferbach/lane_master dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0548 |
|
- Mean Iou: 0.0708 |
|
- Mean Accuracy: 0.1236 |
|
- Overall Accuracy: 0.1217 |
|
- Accuracy Background: nan |
|
- Accuracy Left: 0.1893 |
|
- Accuracy Right: 0.0578 |
|
- Iou Background: 0.0 |
|
- Iou Left: 0.1581 |
|
- Iou Right: 0.0544 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 1337 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: polynomial |
|
- training_steps: 1000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Left | Accuracy Right | Iou Background | Iou Left | Iou Right | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:--------------:|:--------------:|:--------:|:---------:| |
|
| 0.1 | 1.0 | 308 | 0.0862 | 0.0008 | 0.0013 | 0.0012 | nan | 0.0025 | 0.0 | 0.0 | 0.0025 | 0.0 | |
|
| 0.0596 | 2.0 | 616 | 0.0597 | 0.0712 | 0.1126 | 0.1132 | nan | 0.0940 | 0.1313 | 0.0 | 0.0907 | 0.1228 | |
|
| 0.0506 | 3.0 | 924 | 0.0551 | 0.0682 | 0.1171 | 0.1152 | nan | 0.1805 | 0.0536 | 0.0 | 0.1539 | 0.0508 | |
|
| 0.0494 | 3.25 | 1000 | 0.0548 | 0.0708 | 0.1236 | 0.1217 | nan | 0.1893 | 0.0578 | 0.0 | 0.1581 | 0.0544 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.0.dev0 |
|
- Pytorch 2.0.0+cu118 |
|
- Datasets 2.11.0 |
|
- Tokenizers 0.13.3 |
|
|